
Technische Universität Darmstadt
Fachbereich Elektrotechnik und Informationstechnik

Fachbereich Informatik (Zweitmitgliedschaft)
Fachgebiet Multimedia Kommunikation

Prof. Dr.-Ing. Ralf Steinmetz

How to create an Overlay in PeerfactSim.KOM

Eser Esen
February 28, 2008

Contents

1 Introduction 5
1.1 Objective . 5
1.2 Requirements . 5
1.3 How to use this Tutorial? . 5

2 Basics 7
2.1 What is an overlay? . 7
2.2 What and Why PeerfactSim.KOM? . 8

3 Create an overlay for PeerfactSim.KOM 9
3.1 Preparations . 9
3.2 Definitions . 9
3.3 The basic structure of an Overlay . 10
3.4 Implementation of OverlayID and OverlayContact 12
3.5 The Routing Table . 16
3.6 Messages . 18
3.7 The Node Implementation . 20
3.8 The Operations . 22

3.8.1 Operation callbacks . 23
3.9 The Bootstrap Part . 24
3.10 Applications . 25
3.11 Component factories . 26
3.12 The Routing Mechanism . 28
3.13 Creating networks with my overlay . 29
3.14 Evaluation of the new Overlay . 32

4 FAQ 35
4.1 Common questions . 35
4.2 Implementation . 35

3

Chapter 1

Introduction

This paper is intended to show you how to create an overlay in PeerfactSim.KOM. It
additionally has a FAQ with questions about the implementation process and answers to
some common questions. This tutorial help to understand the basic structure of an overlay
designed for PeerfactSim.KOM and give a help for further projects with PeerfactSim.KOM.

1.1 Objective
The objective of this paper is to show the first steps to prepare and create a full functioning
overlay with PeerfactSim.KOM. After that, you will be able to create networks simulated
with PeerfactSim.KOM to evaluate your overlay.

1.2 Requirements
The first step before we start is to prepare your workspace for creating overlays. Apperantly
we need a good environment to implement our overlay. The standard environment we can
use is Eclipse in an actual stable release (SDK 3.3.1 or current Europa Edition). The
second is to get a copy of PeerfactSim.KOM (currently v3.0). And certainly we need a
specification for our new overlay which we want to create now. Or in other words, you
should know what kind of overlay you want to create. So we need to ask ourself, how the
topology will be built, how the message transmission works (routing messages), how we
are going to maintain our peers states.

1.3 How to use this Tutorial?
This tutorial is structured in a top-down manner. It is also possible to use it as a manual
to get answers for implementation purposes. The FAQ part in this paper answers some
frequent question in common and in implementation.

5

1.3. HOW TO USE THIS TUTORIAL?

6

Chapter 2

Basics

First we start with some basics. We need to know what an overlay is and what precisely
PeerfactSim.KOM is. In the next part we will present the design of PeerfactSim.KOM
to show how it works and how every overlay, developed for PeerfactSim.KOM, is working
with this.

2.1 What is an overlay?

An overlay is a network which is built on top of an existing network. For example: A
network built on top of the Internet with some peers connected to each other is called an
Overlay Network. Hosts in the underlaying network acting in that overlay network are
called nodes. These nodes are connected by virtually or logically defined links, which is
totally independent from their connection in the underlaying network. A basic example
of an overlay could be GNutella [4] which is built on top of the existing Internet with
connected hosts.

The main characteristic of an overlay network is defined as follows:

• network built on top of an existing other network

• in most cases an own virtually or logically address space is defined

• uses a routing technique to send messages to other peers in that overlay-network

• peer-to-peer networks are overlay networks (like Skype, Chatnetworks, GNutella,
BitTorrent)

An overlay defines with its structure a new topology on top of the underlaying network.
It has its own rules and routing technique using the links in the underlaying layers of the
existing network.

7

2.2. WHAT AND WHY PEERFACTSIM.KOM?

2.2 What and Why PeerfactSim.KOM?
PeerfactSim.KOM [3] is a java based Peer-to-Peer evualation platform which gives us the
ability to create an overlay and simulate large-scale networks with it. The target is to
evaluate those overlays and compare each other to get a clear conclusion about the func-
tionality and answers to the most important questions like the efficiency, scalability and
flexibility.

8

Chapter 3

Create an overlay for PeerfactSim.KOM

This chapter describes the implementation process of an overly for PeerfactSim.KOM.
First we start with the preparations and the basic structure of an overlay used in Peerfact-
Sim.KOM. In the next part we implement all needed components for an overlay step-by-
step. The last part describes the important routing core of an overlay and introduce the
using of analyzers for the evaluation process. In this paper, all components are prefixed
with My to show examplary components.

3.1 Preparations
Before we start with the implementation, we need a concrete specification for an overlay.
This specification describes the structure of the concrete components of an overlay. The
best way to clarify this, is some type of UML-Diagram or any other model of the overlay
we want to create. Based on that model, we start to implement our new overlay. Some
important components we have to specify, are the node, the routing mechanism, mainte-
nance processes like repairing the current state (Routing Table), handling failure nodes,
doing pings to keep the routing table up-to-date.

One important part is the consistency we have to pay attention for. We’re going to
create an overlay running on a simulator. Since all of our simulations run on one PC,
we need to clone objects when moving them between nodes and other components. If we
want to save state information in an exchangable object, then we need to clone it before
exchanging it between nodes to keep the consistency in our simulation.

3.2 Definitions
Before we start, we’re going to explain some definitions used by this tutorial.

• Node is the peer acting on the overlay. The Node is the main part of our implemen-
tation. It will handle all message transmissions and many other operations. After
implementing all sub-components we’re going to bring them all together on our Node.

9

3.3. THE BASIC STRUCTURE OF AN OVERLAY

On a real network a node can be related to many applications, but applications will
always have a single relation to one node. So one Node, also called, OverlayNode,
can handle many applications message transmissions, while one application is only
related to one node.

• IP (Internet-Protocol) is one Node’s current address on the Internet or Local Area
Network (LAN), which is used to uniquely identify the node. In most cases the IP
address can be used by the overlay to identify the nodes. In every case, the nodes on
top of the hosts connected each other in the underlying network, the IP is used for
connection.

3.3 The basic structure of an Overlay
Every overlay consists of different types of components we have to implement. For a
properly working overlay, we have to clarify all needed components needed by our overlay.

These are as follows:

• Identify the Node: Every node in an overlay network must be uniquely identifiable.
This means a node must have some kind of virtual or logical label. Since we identify
hosts on the underlaying internet by using their IP address, we have to define or
use an existing address space to identify each node in the overlay network. In most
cases, overlay networks have their own address space. These addresses are typically
virtual or logical labels, which are calculated or randomly chosen. An example is to
calculate a hash code using the current IP address. This means we have to decide
how to save this kind of virtual or logical label. PeerfactSim.KOM has all needed
interfaces and abstract classed to create our overlay components. The component
used for identification in PeerfactSim.KOM is called OverlayID. Every node in an
overlay network is identified by one of these OverlaysIDs. Every time we want to
give an object or component a unique identification to identify it on the overlay,
we must assign it with an OverlayID. This means all nodes, document objects and
messages, which must be identified on the overlay network, have to be identified by
the OverlayID interface or at least have a reference to an OverlayID object. For
example, messages do not need to be labeled by an OverlayID. Since a message has
its destination, this destination is marked by an OverlayID object owned by the
current message.

• One nodes contact card: If one node wants to send some messages to another node,
he needs to get his contact information like the business card of a business man. So we
need a component which holds the ID of a node and his contact address. By default,
the ID is, like mentioned before, the OverlayID and his address, this means, his IP
address. These contacts are called OverlayContact. The Interface OverlayContact
represents one node’s ’business card’. With an OverlayContact one node is able to
send messages or documents to the node represented by this OverlayContact. So all

10

3.3. THE BASIC STRUCTURE OF AN OVERLAY

node’s are going to hold a list of different OverlayContact’s representing a group of
nodes (representing a part of the whole network) known by the current node.

• Identification of messages and data objects: Every messages and every data
object sent from one node to another has its destination. These destinations are
specified by OverlayIDs. But like in Hash tables using keys for the objects, which
are used to identify and correctly place these objects in the table, we differentiate
the ID and the key. So we use OverlayID generally to identify any object, but to
identify messages and data objects we use OverlayKey. OverlayKeys are extending
OverlayID by default, this means OverlayKey is from type OverlayID but we need to
differentiate the identification of nodes and messages/objects since nodes are acting
components with running operations and messages/objects are just objects used and
handled by the nodes.

• The Routing table: Peers (Nodes) sending messages and data objects, need an
address book holding contacts to known peers in the current active network. This
address book, called the routing table has a protocol-specific structure. In some cases,
peer-to-peer protocols could use 1-dimensional arrays of OverlayContacts, holding
one nodes ID and address. Other protocols use complex tree structures to store
those OverlayContacts. So, dependent from the protocols specification, we are going
to implement our routing table. These kinds of routing tables are represented by the
interface OverlayRoutingTable. This interface provides the basic methods to access
and manage the routing table.

• Encapsulate commands in operations: All commands like join, leave, mainte-
nance processes and many others, should be encapsulated in classes according to the
command design-pattern [2]. The command pattern encapsulates a request as an ob-
ject with all its parameters. The interface we have to use for this commands is called
AbstractOperation, which have to be parameterized. The parameters concretize the
node type and the result type returned after finishing the operation. Typically, if
some action should take place in a component, this action will be represented by
an operation object providing the required functionality. The AbstractOperation is
an abstract which holds all basic methods ready to use. All of our operations we
are going to implement and extend AbstractOperation have their routines and algo-
rithms executed while a simulation is running. In the following subchapters we will
concretize the implementation of these operations.

• Creating the components for simulation: To simulate the network working
with our newly created overlay, we have to give the simulator the ability to create
the correct components like nodes and applications. The simulator uses an interface
for creating components according to the Abstract Factory Design-Pattern. So every
component that needs to be created by the simulator to run those simulations, must
have a factory class implementing that interface, which is called ComponentFactory.
Typically we have to create factories for creating nodes, IDs and applications running

11

3.4. IMPLEMENTATION OF OVERLAYID AND OVERLAYCONTACT

on top of nodes. The ComponentFactory interface represents the class ability to
create the needed components for our simulations. In Component factories we are
going to feed the components with all needed data and parameters returning them
to the simulator by the given method.

The next important part is the concrete topology of the overlay network. In most cases
ID spaces are represented by a ring. The following figure shows the simple network in a
ring with its IDs in space. The IDs are represented as integer numbers.

Figure 3.1: A simple ring topology represented by integer ID’s

3.4 Implementation of OverlayID and OverlayContact
Now let’s start creating the first components we need to create our node component. We
use the interface OverlayID located in the API Packets of PeerfactSim.KOM. Let us call
our ID component MyOverlayID. In the following listing we see an auto-generated class in
Eclipse implementing the OverlayID-Interface.

Listing 3.1: Example: Automatically generated class MyOverlayID in Eclipse
1 pub l i c c l a s s MyOverlayID implements OverlayID {
2

3 pub l i c MyOverlayID () {
4 // TODO Auto−generated cons t ruc t o r s tub
5 }
6

7 pub l i c byte [] getBytes () {
8 // TODO Auto−generated method s tub
9 re turn nu l l ;

10 }
11

12

3.4. IMPLEMENTATION OF OVERLAYID AND OVERLAYCONTACT

12 pub l i c Object getUniqueValue () {
13 // TODO Auto−generated method s tub
14 re turn nu l l ;
15 }
16

17 @Override
18 pub l i c i n t compareTo (OverlayID o) {
19 // TODO Auto−generated method s tub
20 re turn 0 ;
21 }
22 }

Dependent on our overlay specification, we have to define the type we need to store our
concrete ID in the newly created class MyOverlayID. Lets say we want to create networks
with a maximum node count of 2 Billion. So we can use the primitive integer to uniquely
identify nodes with an ID. We can also use a primitive array representing our ID or the
BigInteger class, which can nearly save every big number as long as your computers RAM
is big enough ,. Choosing the primitive integer results in a representation of a 32 Bit ID.
In other words our network can scale up to 232 − 1 = 4, 294, 967, 295. If we are going to
use a primitive integer, then we need to ask ourself how to do all those calculations and
comparisons between two integer, since they only represent a simple number in base 10.
The best way is to store this ID number in a BigInteger. BigInteger represents an universal
integer storage type. Universal means with no size limitation. But in our case, we only
want to use BigInteger because of its fine methods presented by this class. So we are able
to do complex binary comparisons and precise bit manipulations. This will save a lot of
work.

On the Listing 3.2 you see two methods getBytes and getUniqueValue. The first is
in most cases only interesting if your going to serialize your OverlayID object to send it
over sockets. The second method is used to return the concrete unique value stored in our
MyOverlayID class, this means the integer or BigInteger object you are using to store the
ID.

Listing 3.2: An example how we could implement our ID object in MyOverlayID
1 pub l i c c l a s s MyOverlayID implements OverlayID {
2

3 // the id o b j e c t ho l d ing the current id in space
4 pr i va t e B ig Intege r myID ;
5

6 pub l i c MyOverlayID (Big Intege r myID) {
7 // the new id must be generated and passed to our cons t ruc t o r
8 t h i s .myID = myID ;
9 }

10

11 pub l i c MyOverlayID (i n t myID) {
12 t h i s .myID = Big Intege r . valueOf (myID) ;
13 }
14

15 pub l i c byte [] getBytes () {

13

3.4. IMPLEMENTATION OF OVERLAYID AND OVERLAYCONTACT

16 //By de f au l t , we do not need t h i s method
17 // but anyway we use t h i s f o r demonstrat ion
18 byte [] buf = nu l l ;
19 t ry {
20 // S e r i a l i z e to a by t e array
21 ByteArrayOutputStream bos = new ByteArrayOutputStream () ;
22 ObjectOutput out = new ObjectOutputStream (bos) ;
23 out . wr i teObject (t h i s) ;
24 out . c l o s e () ;
25

26 // Get the b y t e s o f the s e r i a l i z e d o b j e c t
27 buf = bos . toByteArray () ;
28 } catch (IOException e) {}
29

30 // bu f re turns the exac t s i z e o f t h i s whole MyOverlayID
o b j e c t

31 re turn buf ;
32 }
33

34 pub l i c Object getUniqueValue () {
35 // re turn the id o b j e c t
36 re turn t h i s .myID ;
37 }
38

39 pub l i c B ig Intege r getValue () {
40 re turn t h i s .myID ;
41 }
42

43 pub l i c i n t compareTo (OverlayID arg0) {
44 MyOverlayID m = (MyOverlayID) arg0 ;
45 re turn t h i s .myID . compareTo (m. getValue ()) ;
46 }
47

48 pub l i c i n t getDis tance (MyOverlayID id) {
49 Big Intege r o id = id . getValue () ;
50 re turn t h i s .myID . subt rac t (o id) . abs () . intValue () ;
51 }
52

53 pub l i c boolean equa l s (MyOverlayID o) {
54 re turn t h i s .myID . compareTo (o . getValue ())==0;
55 }
56 }

On the Listing 3.2 we see some methods additionally defined. One method is getValue(),
it has the same code like getUniqueValue(). The reason is to make it easier to get the
concrete ID object. In this case, our ID object is a BigInteger object. Another solution
for this would be to define the ID object as an Integer, which extends Object too and
can be easily used for comparing and other complex operations. The second method is
getDistance(MyOverlayID id). Calculating the distance between two given ID’s is in most
cases a very important process for the routing core. Deciding which ID is closer to one

14

3.4. IMPLEMENTATION OF OVERLAYID AND OVERLAYCONTACT

documents ID in an overlay network clarifies the problem.
After creating our OverlayID class, we need to create the contact class, which holds

the newly created OverlayID and the IP address object. PeerfactSim.KOM holds an im-
plementation of the IP address object, which we need to use as our IP address to send
messages to other nodes. This address object is called TransInfo, representing an interface
and has already its implementation called DefaultTransInfo. In the following Listing we
have an example class called MyOverlayContact.

Listing 3.3: Example: The class MyOverlayContact
1 pub l i c c l a s s MyOverlayContact implements OverlayContact<MyOverlayID>,

Comparable<MyOverlayContact> {
2

3 pr i va t e MyOverlayID myID ;
4 pr i va t e TransInfo myTransInfo ;
5 pr i va t e boolean i sA l i v e ;
6

7 pub l i c MyOverlayContact (MyOverlayID id , TransInfo t r an s I n f o) {
8 t h i s .myID = id ;
9 t h i s . myTransInfo = t r an s In f o ;

10 }
11

12 pub l i c MyOverlayID getOverlayID () {
13 re turn t h i s .myID ;
14 }
15

16 pub l i c TransInfo getTransIn fo () {
17 re turn t h i s . myTransInfo ;
18 }
19

20 pub l i c void s e tA l i v e (boolean a l i v e) {
21 t h i s . i sA l i v e = a l i v e ;
22 }
23

24 pub l i c boolean i sA l i v e () {
25 re turn t h i s . i sA l i v e ;
26 }
27

28 pub l i c MyOverlayContact c l one () {
29 MyOverlayContact newCon = new MyOverlayContact (t h i s .myID,

t h i s . myTransInfo) ;
30 newCon . s e tA l i v e (t h i s . i sA l i v e) ;
31 re turn newCon ;
32 }
33

34 pub l i c i n t getDis tance (MyOverlayContact con) {
35 re turn t h i s .myID . getDi s tance (con . getOverlayID ()) ;
36 }
37

38 pub l i c i n t compareTo (MyOverlayContact o) {
39 re turn t h i s .myID . compareTo (o . getOverlayID ()) ;

15

3.5. THE ROUTING TABLE

40 }
41

42 pub l i c boolean equa l s (MyOverlayContact o) {
43 re turn t h i s .myID . equa l s (o . getOverlayID ()) ;
44 }
45 }

By default we need some more methods like comparison, clone and distance methods.
Cloning objects is important to ensure consistency, because we’re going to create a net-
work with thousands of nodes all with their OverlayID and OverlayContact objects in our
computers RAM. Not cloning objects in the important parts of our new overlay will def-
initely result in bad behaviours. Typically we should add the Cloneable interface to our
OverlayContact class. The OverlayID class does not need to be cloned, because every id
is unique in our simulation, but this is dependent from your concrete implementation.

To clarify the need of a components clone ability, we see that MyOverlayContact from
Listing 3.3 contains a flag called isAlive, which represents the current contacts alive state
from the perspective of one node holding this contact. If a node wants to send this contact
to another, it has to use the clone method to create a new contact object with a resetted
alive flag.

The getTransInfo() method is used to get the IP address object of one active node in
the current active network. Also the distance calculation (getDistance(MyOverlayContact
con)) is needed for comparison cases.

3.5 The Routing Table
Next we are going to "implement" the routing table used by every node in our new overlay.
In the first steps, before we implement our concrete routing table, we need to decide how
to store our OverlayContacts to use it efficiently in the routing/sending mechanism. The
simplest way to store our contacts is an array of MyOverlayContacts. But dependent
on our overlays specification we possibly need to create a complex contact storage. It
is also important to decide what kind of storage type we want to use. In some cases it
could be interesting to use some collection class like LinkedList or Vector to store our
OverlayContacts. In order to use as low memory as possible, in this tutorial we use a
simple array of MyOverlayContacts. In the following Listing is a simple example with an
implementation of the given interface OverlayRoutingTable, which must be parameterized
to define the concrete elements to be stored in it.

Listing 3.4: Example: An automatically generated class MyOverlayRoutingTable in Eclipse
with a simple storage example

1 pub l i c c l a s s MyOverlayRoutingTable implements OverlayRoutingTable<
MyOverlayID , MyOverlayContact> {

2

3 pr i va t e MyOverlayContact [] myRT;
4 pr i va t e i n t s i z e ;
5

16

3.5. THE ROUTING TABLE

6 pub l i c MyOverlayRoutingTable (i n t s i z e) {
7 t h i s . s i z e = s i z e ;
8 t h i s .myRT = new MyOverlayContact [s i z e] ;
9 }

10

11 pub l i c void addContact (MyOverlayContact contact) {
12 i f (s i z e () == th i s . s i z e)
13 {
14 //need to check f o r rep lacement
15 }
16 e l s e
17 {
18 //add i t
19 f o r (i n t i =0; i<t h i s . s i z e ; i++)
20 {
21 i f (t h i s .myRT[i] == nu l l)
22 {
23 t h i s .myRT[i] = contact ;
24 re turn ;
25 }
26 }
27 }
28 }
29

30 pub l i c i n t s i z e ()
31 {
32 i n t counter=0;
33 f o r (i n t i =0; i<t h i s . s i z e ; i++) i f (t h i s .myRT[i] != nu l l)

counter++;
34

35 re turn counter ;
36 }
37

38 pub l i c L is t<MyOverlayContact> a l lContac t s () {
39 List<MyOverlayContact> l i s t = new ArrayList<MyOverlayContact

>(0) ;
40 f o r (MyOverlayContact con : t h i s .myRT) l i s t . add (con) ;
41

42 re turn l i s t ;
43 }
44

45 pub l i c void c l ea rContac t s () {
46 t h i s .myRT = new MyOverlayContact [t h i s . s i z e] ;
47 }
48

49 pub l i c MyOverlayContact getContact (MyOverlayID oid) {
50 f o r (i n t i =0; i<t h i s . s i z e ; i++)
51 {
52 i f (t h i s .myRT[i] . getOverlayID () . equa l s (o id))
53 {
54 re turn t h i s .myRT[i] ;

17

3.6. MESSAGES

55 }
56 }
57

58 re turn nu l l ;
59 }
60

61 pub l i c void removeContact (MyOverlayID oid) {
62 f o r (i n t i =0; i<t h i s . s i z e ; i++)
63 {
64 i f (t h i s .myRT[i] . getOverlayID () . equa l s (o id))
65 {
66 t h i s .myRT[i] = nu l l ;
67 re turn ;
68 }
69 }
70 }
71 }

Typically we need to know the size of our routing table. In most cases, the size of the
routing table depends on the size of our OverlayID and sight-range of our node. A simple
scenario consists of a network with nodes having 50 entries in their routing table. The
conditions for the correct entries in the routing table are protocol specific. Lets say using
a 1-dimensional array of MyOverlayContacts is for saving entries by distance. This means
the first entry in our array has the smallest distance to the holder of this routing table and
the last entry the biggest distance.

In the Listing 3.4 we see exactly 6 methods, 5 of them must be implemented given by
the interface. These methods are standards to manage the content of our new routing table.
Additionally we need some more methods for comparison, cloning, distance calculation and
many others, which we need in our routing mechanism and other processes.

3.6 Messages

All messages that our nodes are going to send in the simulations must be implemented.
Typically its only important to define the message types. This means, messages are used
like commands in an overlay sent to other nodes. Some messages contain some objects like
the routing table or some other objects that needs to be exchanged between nodes. All
messages that we are going to implement must extend AbstractOverlayMessage. This class
has to be parameterized, to concretize its type of the OverlayID used by all messages. The
best way to create the message classes is to create one overlay-specific abstract message class
extending AbstractOverlayMessage, then creating the concrete message classes extending
the newly created overlay-specific message class. This gives us the ability to define some
general methods in our abstract class needed in all messages, like hop count and overlay-
specific informations.

In Listing 3.5 we see our abstract OverlayMessage defined to use for our new messages:

18

3.6. MESSAGES

Listing 3.5: Example: MyOverlayMessage as an abstract message class
1 pub l i c ab s t r a c t c l a s s MyOverlayMessage extends AbstractOverlayMessage<

MyOverlayID> {
2

3 pr i va t e i n t hopCount = 0 ;
4

5 pub l i c MyOverlayMessage (MyOverlayID sender , MyOverlayID r e c e i v e r) {
6 // sav ing the sender and r e c e i v e r in the super c l a s s
7 super (sender , r e c e i v e r) ;
8 }
9

10 pub l i c Message getPayload () {
11 re turn t h i s ;
12 }
13

14 // t h i s must be c a l c u l a t e d by the s u b c l a s s e s
15 pub l i c ab s t r a c t long g e tS i z e () ;
16

17 // re tu rn ing curren t hop count in a s imu la t i on
18 pub l i c i n t getHopCount () {
19 re turn t h i s . hopCount ;
20 }
21

22 //used in the rou t ing proces s
23 pub l i c void incHop () {
24 t h i s . hopCount++;
25 }
26 }

After creating our abstract message class, we start to create the concrete message
classes. The following listing shows one example of a message class called SimpleMessage,
representing a simple message, which can be sent between nodes:

Listing 3.6: Example: A simple message class MySimpleMessage
1 pub l i c c l a s s MySimpleMessage extends MyOverlayMessage {
2

3 pub l i c MySimpleMessage (MyOverlayID sender , MyOverlayID r e c e i v e r) {
4 super (sender , r e c e i v e r) ;
5 }
6

7 @Override
8 pub l i c long g e tS i z e () {
9 //sum the s i z e o f the components in t h i s message

10 // c l a s s and re turn
11 i n t s e nd e r s i z e = getSender () . getBytes () . l ength ;
12 i n t r e c v s i z e = getRece ive r () . getBytes () . l ength ;
13 re turn s e nd e r s i z e+r e c v s i z e ;
14 }
15 }

The most important message classes are the join and maintenance specific messages.

19

3.7. THE NODE IMPLEMENTATION

Above all is the join message, which contains initiation and preparation-specific information
of the node and its routing table.

3.7 The Node Implementation

The most important component in our overlay, the node, has the base methods, in most
cases the base routing core and many other implementations to run properly in an overlay.
In our example we will create a class called MyOverlayNode. First we will check what kind
of methods we have to implement. Then we discuss the needed methods and algorithms
we should implement in our new node.

Listing 3.7: Example: The base node class MyOverlayNode
1 pub l i c c l a s s MyOverlayNode extends AbstractOverlayNode {
2

3 pub l i c MyOverlayNode (OverlayID peerId , shor t port) {
4 super (peerId , port) ;
5 }
6

7 @Override
8 pub l i c TransLayer getTransLayer () { . . . }
9

10 pub l i c void connect iv ityChanged (Connect iv ityEvent ce) { . . . }
11 }

On the first line we see MyOverlayNode extending AbstractOverlayNode. This abstract
class provides all base components like the routing table and the translayer object, needed
for message transmissions. By default, the base algorithms like the routing mechanism and
routing table specific methods should be implemented in that node.

In line 8 of Listing 3.7 we have the method which returns our TransLayer, this object
is needed for message transmissions. It provides the methods to send messages to other
nodes using their addresses from the OverlayContact object.

This node must handle all message incomes and message replies. To avoid an un-
clear node structure with many message handlings, we should create a central class, which
handles all messages incoming. All components awaiting messages or message replies must
implement the interface TransMessageCallback (for message replies) and TransMessageLis-
tener (listening on one port for incoming message requests). So we create a new message
handler and set it to listen on a port for new messages. The following listing shows an
example of that message handler:

Listing 3.8: Example: The message handler for listening on incoming messages
1 pub l i c c l a s s MyMessageHandler implements TransMessageCallback ,

TransMessageListener {
2

3 pr i va t e MyOverlayNode node ;
4

5 pub l i c MyMessageHandler (MyOverlayNode node)

20

3.7. THE NODE IMPLEMENTATION

6 {
7 // s e t our node to the hand l e r s po in t e r
8 t h i s . node = node ;
9 }

10

11 pub l i c void messageTimeoutOccured (i n t commId)
12 {
13 // handle message t imeouts
14 // here we shou ld t r y to resend t ha t message
15 . . .
16 }
17

18 pub l i c void r e c e i v e (Message msg , TransInfo sender In fo , i n t commId)
19 {
20 // here we ge t a r e p l y from a node with address sender In fo
21 . . .
22 }
23

24 pub l i c void messageArrived (TransMsgEvent rece iv ingEvent)
25 {
26 // here we ge t new messages a r r i v i n g
27 //The TransMsgEvent conta ins a l l o b j e c t s l i k e message and

commId
28 . . .
29 }
30 }

This message handler must be registered as an Listener on messages. This step is done
by getting the TransLayer in the node and calling addTransMsgListener to register our
new message handler. After doing this, our node is ready to receive new messages. The
following listing clarify this:

Listing 3.9: Example: Registering the message handler for listening on new messages
1 pub l i c c l a s s MyOverlayNode extends AbstractOverlayNode {
2

3 pr i va t e MyMessageHandler messageHandler ;
4

5 pub l i c MyOverlayNode (OverlayID peerId , shor t port) {
6 super (peerId , port) ;
7

8 // crea t e the message hand ler
9 t h i s . messageHandler = new MyMessageHandler (t h i s) ;

10

11 //add the message hand ler to the l i s t e n e r s l i s t
12 t h i s . getTransLayer () . addTransMsgListener (t h i s . messageHandler

, t h i s . getPort ()) ;
13 }
14

15 . . .
16 }

21

3.8. THE OPERATIONS

New messages arriving on our node results in calling the method messageArrived. In this
method we must differentiate the message types and handle them. An example handling
those messages is listed as follows:

Listing 3.10: Example: Handling new messages incoming on the node
1 . . .
2

3 pub l i c void messageArrived (TransMsgEvent rece iv ingEvent)
4 {
5 Message msg = rece iv ingEvent . getPayload () ;
6

7 i f (msg i n s t an c e o f JoinRequest) {
8 proce s sJo in (rece iv ingEvent) ;
9 } e l s e i f (msg i n s t an c e o f Leave) {

10 processLeave (r ece iv ingEvent) ;
11 } e l s e i f (msg i n s t an c e o f Ping) {
12 processPing (rece iv ingEvent) ;
13 } e l s e i f (msg i n s t an c e o f Anything) {
14 . . .
15 } e l s e { . . . }
16 }
17

18 . . .

3.8 The Operations

To properly run overlay-specific operations in our simulations, we have to create our oper-
ation classes extending AbstractOperation. One operation always represents one command
like join or leave. All operations contain a method called execute, which is used to start
the operation. Starting one operation should be always done by using the method sched-
uleImmediately(). Later on, we will concretize this step.

In the following Listing we see a simple operation, which shows its concrete structure
implementing from AbstractOperation:

Listing 3.11: Example: A simple operation class SimpleOperation
1 pub l i c c l a s s SimpleOperation extends AbstractOperation<MyOverlayNode , Object

> {
2

3 protec ted SimpleOperation (MyOverlayNode component , OperationCal lback
<Object> ca l l ba ck) {

4 super (component , c a l l b a ck) ;
5 }
6

7 @Override
8 protec ted void execute () {
9 // doing something l i k e sending messages

10 //or mainta in ig the roo t node , e t c .

22

3.8. THE OPERATIONS

11 }
12

13 @Override
14 pub l i c Object ge tResu l t () {
15 // t h i s opera t ion has a l l methods we need to check
16 // i t s s t a t e and ge t information , so we re turn THIS .
17 re turn t h i s ;
18 }
19 }

3.8.1 Operation callbacks

In order to be informed about operation completion, we have to use OperationCallback.
Every time an operation gets finished, it could be interesting to be informed if the op-
eration was successful or not. Lets say we use a maximum execution time of 5 seconds
for an operation. This means we schedule the operation with the method scheduleOper-
ationTimeout(long timeout). Reaching an execution time of 60 seconds for the operation
results in calling the method operationTimeoutOccured(). This would sign the unsuccessful
finish of the operation and can be catched by referencing to an OperationCallback.

The best way to "observe" the finish state of all operations running on a node, is to
create a class, which acts as a central operation callback listener. In the following listing
you will see a simple example how to do that.

Listing 3.12: Example: Using the OperationCallback listener on operations
1 pub l i c c l a s s MyOperationListener implements OperationCal lback<Object> {
2 pr i va t e MyOverlayNode _masterNode ;
3

4 pub l i c Operat ionL i s t ener (MyOverlayNode masterNode) {
5 t h i s . _masterNode = masterNode ;
6 }
7

8 pub l i c void ca l l edOpe ra t i onFa i l ed (Operation<Object> op) {
9 //Operation op has f a i l e d

10 // handle i t
11 }
12

13 pub l i c void ca l l edOperat ionSucceeded (Operation<Object> op) {
14 //Operation op was s u c c e s s f u l
15 // handle i t
16 }
17 }

Listing 3.13: Example: Using the OperationListener for callbacks
1 // in MyOverlayNode we crea t e an opera t ion
2 //and as s i gn the Opera t ionLis tener to i t
3

4 MyOperationListener myOpListener = new MyOperationListener (t h i s) ;
5

23

3.9. THE BOOTSTRAP PART

6 MySimpleOperation simple_op = new MySimpleOperation (th i s , myOpListener) ;
7 //5000000 means 5 seconds on the s imu la tor t imer
8 simple_op . scheduleOperationTimeout (5000000) ;

3.9 The Bootstrap Part

To be able to let nodes create a network with new nodes joining to that network, we have
to create a central list containing all active nodes. This list, called the BootstrapManager,
represents the only central part in an overlay, which is a must to give nodes the ability
to join the network. Since a new node does not know where to join the network, it must
be able to access some kind of address book of active nodes, in order to become an active
part of a peer-to-peer network. Choosing one of these nodes to send a join-request to, is
the first step of the join-process of every node starting to join.

Listing 3.14: Example: The BootstrapManager
1 pub l i c c l a s s MyBootstrapManager implements BootstrapManager {
2

3 pr i va t e Lis t<OverlayNode> act iveNodes ;
4

5 pub l i c MyBootstrapManager ()
6 {
7 t h i s . act iveNodes = new LinkedList<OverlayNode >() ;
8 }
9

10 pub l i c L is t<TransInfo> getBoot s t rap In fo ()
11 {
12 // put a l l TransInfo o b j e c t s from act iveNodes
13 // in a new l i s t and re turn
14 List<TransInfo> l i s t = new LinkedList<TransInfo >() ;
15 f o r (OverlayNode cNode : t h i s . act iveNodes)
16 l i s t . add (((MyOverlayNode) cNode) . getLocalContact () .

getTransIn fo ()) ;
17

18 re turn l i s t ;
19 }
20

21 pub l i c void r eg i s t e rNode (OverlayNode node)
22 {
23 t h i s . act iveNode . add (node) ;
24 }
25

26 pub l i c void unreg i s terNode (OverlayNode node)
27 {
28 t h i s . act iveNode . remove (node) ;
29 }
30 }

24

3.10. APPLICATIONS

3.10 Applications

Applications, running on top of the node, must be registered on the nodes, they are run-
ning on top of them. One application is set to one node. It is also possible to assign
many applications to one node. So every node must hold a reference to an (array of) ap-
plication(s) running on top of the node. PeerfactSim.KOM provides the needed interface,
called AbstractApplication. The best way is to create an abstract application class, called
MyOverlayMessage. In the Listing below we see one example:

Listing 3.15: Example: An abstract application class
1 pub l i c ab s t r a c t c l a s s MyOverlayApplication extends Abst rac tAppl i cat ion {
2

3 pr i va t e MyOverlayNode node ;
4

5 pub l i c MyOverlayApplication (MyOverlayNode node) {
6 t h i s . node = node ;
7 }
8

9 protec ted MyOverlayNode getNode () {
10 re turn t h i s . node ;
11 }
12

13 // c a l l e d when an app l i c a t i on−s p e c i f i c message a r r i v e s
14 pub l i c ab s t r a c t void d e l i v e r (MyOverlayMessage msg) ;
15

16 // c a l l e d when node jo ined or l e f t the network , j u s t to inform the
a pp l i c a t i o n

17 pub l i c ab s t r a c t void update (MyOverlayContact contact , boolean j o in ed
) ;

18

19 //any o ther methods
20 pub l i c ab s t r a c t void anyMethod () ;
21 }

On Listing 3.15 we see two methods deliver and update. These two methods are part of
the Common API for structered peer-to-peer overlays presented in [1]. The first method
is used if the node receives a message which is application specific. This message is then
delivered to the application by upcalling this method. Also the method update informs the
application about nodes joining or leaving the network.

Listing 3.16: Example: A simple application class
1 pub l i c c l a s s MyApplication extends MyOverlayApplication {
2

3 pub l i c MyApplication (MyOverlayNode node) {
4 super (node) ;
5 }
6

7 @Override
8 pub l i c void anyMethod () {

25

3.11. COMPONENT FACTORIES

9 // . . .
10 }
11

12 @Override
13 pub l i c void d e l i v e r (MyOverlayMessage msg) {
14 //a message a r r i v e s f o r the a pp l i c a t i o n
15 // handle i t
16 System . out . p r i n t l n ("New␣message␣ a r r i v ed : ␣"+msg) ;
17 }
18

19 @Override
20 pub l i c void update (MyOverlayContact contact , boolean j o in ed) {
21 // the curren t node s t a t e changed
22 //node jo ined or l e f t the network
23 System . out . p r i n t l n ("Node␣"+contact+"␣ j o in ed ?␣"+jo in ed) ;
24 }
25

26 //a s imple method to send app l i c a t i o n s p e c i f i c
27 //messages to o ther a p p l i c a t i o n s
28 pub l i c void send (MyOverlayMessage msg) {
29 t h i s . getNode () . send (msg) ;
30 }
31 }

3.11 Component factories

The two most important component factories will be the application factory and the node
factory. Both of them are used by the simulator to create these components for the simu-
lations. Since nodes and application are from type Component, automatically defined by
extending AbstractApplication and AbstractOverlayNode, we need to fully initialize these
components in our factory. The following two listings show an example implementation
of the two needed factories. On the next subchapter we will create the configuration file
which gives the simulator all needed informations to run a simulation properly.

Listing 3.17: Example: Component factory for creating nodes
1 pub l i c c l a s s MyOverlayNodeFactory implements ComponentFactory {
2

3 //we use por t 123 f o r msg t ransmis s ions
4 pr i va t e shor t port = 123 ;
5

6 pub l i c MyOverlayNodeFactory () {
7 }
8

9 pub l i c Component createComponent (Host host) {
10 // crea t e the new OverlayNode and s e t hos t to t ha t new node
11 // re turn new node
12 MyOverlayNode newNode = new MyOverlayNode (newOverlayID () ,

port) ;

26

3.12. THE ROUTING MECHANISM

13 re turn newNode ;
14 }
15

16 pub l i c MyOverlayID newOverlayID ()
17 {
18 // crea t e new OverlayID with random c l a s s
19 // g e t t i n g seed from the s imu la tor
20 MyOverlayIDFactory f a c = MyOverlayIDFactory . g e t In s tance () ;
21 re turn f a c . createNewID () ;
22 }
23 }

Listing 3.18: Example: Component factory for creating applications
1 pub l i c c l a s s MyOverlayApplicationFactory implements ComponentFactory {
2

3 pr i va t e shor t port = 123 ;
4

5 pub l i c MyOverlayApplicationFactory () {}
6

7 pub l i c Component createComponent (Host host) {
8 // crea t e a p p l i c a t i o n
9 // here we can a l s o c r ea t e a new node and pass i t to the

a pp l i c a t i o n
10 MyOverlayApplication newApp = new MyApplication (newNode(host

)) ;
11 newApp . setHost (host) ;
12 re turn newApp ;
13 }
14

15 pub l i c MyOverlayNode newNode(Host host) {
16 MyOverlayNode newNode = new MyOverlayNode (newOverlayID () ,

port) ;
17 re turn newNode ;
18 }
19

20 pub l i c MyOverlayID newOverlayID ()
21 {
22 // crea t e new OverlayID with random c l a s s
23 // g e t t i n g seed from the s imu la tor
24 MyOverlayIDFactory f a c = MyOverlayIDFactory . g e t In s tance () ;
25 re turn f a c . createNewID () ;
26 }
27 }

3.12 The Routing Mechanism
Every peer-to-peer protocol has its routing mechanism. Dependent on our protocol specifi-
cation we have to decide how we implement the routing mechanism in our node to provide
good routing qualities. Implementing the routing core brings important things together,

27

3.13. CREATING NETWORKS WITH MY OVERLAY

like the routing table structure, the quality of the routing table (good entries), the main-
tenance of our routing table and the repair-ability after node failures or nodes leaving the
network without notification.

By default the routing core should implemented within the node class. It is much
clearer to encapsulate the routing core in a class and reference it to the node.

In the following Listing 3.2 we see a simple message routing process. By default the
receiver of a message first checks if the message is at its destination, which means that
the message needs to be delivered to the current node or application. If not, it has to be
routed to another node. This is done by getting the "best" next contact from the routing
table with a specific search and compare algorithm.

Figure 3.2: A simple message routing process

3.13 Creating networks with my overlay

There are at least two steps we have to do, before we can start simulations with our new
overlay. The first is to create a configuration file which configures the simulator and gives
it the ability to create all needed components like applications and nodes to run properly.

28

3.13. CREATING NETWORKS WITH MY OVERLAY

The next step is to define the action file. The action file contains commands, which are also
parsed by the simulator and passed to the nodes or applications. Since the configuration
file defines the components needed for a simulation and their parameters, the action file
holds the commands passing them to the components during a simulation. By default we
only need to use the application factory for our simulations, since we create the node and
assign it to the application in the application factory.

First we will see an example configuration file. After that, we describe every entry in
that XML configuration file step-by-step:

Listing 3.19: Example: A simple configuration file
1 <?xml ve r s i on=’ 1 .0 ’ encoding=’ utf−8 ’ ?>
2 <Conf igurat ion>
3 <Defau l t>
4 <Var iab le name=" seed " value="786876" />
5 <Var iab le name=" f in i shTime " value="6000m" />
6 </Defau l t>
7

8 <SimulatorCore c l a s s="de . tud . kom . p2psim . impl . s imengine . S imulator " s t a t i c
=" ge t In s tance " seed="\$ seed " f i n i s hAt="\$ f in i shTime " />

9

10 <NetLayer c l a s s="de . tud . kom . p2psim . impl . network . s imple . SimpleNetFactory "
downBandwidth="200" upBandwidth="100">

11 <LatencyModel c l a s s="de . tud . kom . p2psim . impl . network . s imple .
SimpleStat icLatencyModel " l a t ency="10"/>

12 </NetLayer>
13

14 <TransLayer c l a s s="de . tud . kom . p2psim . impl . t r an spor t .
DefaultTransLayerFactory "/>

15

16 <ComponentFactory c l a s s="de . tud . kom . p2psim . example . MyOverlayNodeFactory"
/>

17

18 <Monitor c l a s s="de . tud . kom . p2psim . impl . common . DefaultMonitor " s t a r t="0m"
stop="\$ f in i shTime ">

19 <Analyzer c l a s s="de . tud . kom . p2psim . example . MessageAnalyzer "/>
20 </Monitor>
21

22 <HostBui lder c l a s s="de . tud . kom . p2psim . impl . s c ena r i o . De fau l tHostBui lder "
exper imentS ize="1000">

23 <Host groupID="peer1 ">
24 <NetLayer/>
25 <TransLayer/>
26 <ComponentFactory />
27 </Host>
28

29 <Group groupID="group1" s i z e="200">
30 <NetLayer/>
31 <TransLayer/>
32 <ComponentFactory />
33 </Group>

29

3.13. CREATING NETWORKS WITH MY OVERLAY

34

35 <Group groupID="group2" s i z e="799">
36 <NetLayer/>
37 <TransLayer/>
38 <ComponentFactory />
39 </Group>
40 </HostBui lder>
41

42 <Scenar io c l a s s="de . tud . kom . p2psim . impl . s c ena r i o . CSVScenarioFactory"
a c t i o n sF i l e="path/ to / a c t i on s . dat" componentClass="de . tud . kom . p2psim .
example . MyOverlayNode">

43 </Scenar io>
44 </Conf igurat ion>

Now we describe the configuration file from Listing 3.19. In Listing 3.19, we see a simple
configuration file. This file is the main configuration file to run a simulation properly. In
this file the simulator gets all information it needs to initiate its simulation.

In the first part, we see the Default Tag. This is needed for defining variables. In line
4 and 5 we see two well defined variables. The first holds the current seed used by the
simulator and our factory using this seed for java’s randomizer. This seed is useful since
we can reproduce the same ID space in our simulations. The second variable holds the
time to finish the whole simulation. 6000m means 6000 minutes. These time values do
not represent the real time running on your system. Its an internal virtual time used and
simulated by the simulator itself.

The next part is the definition of the Simulator core we want to use for our simulation.
By default we use the class in de.tud.kom.p2psim.impl.simengine and pass it the two defined
variables. This tag must be named SimulatorCore.

On the next part we are going to define the underlying components in our simulation
we need. The first is the network layer we want to work on. Since PeerfactSim.KOM
abstracts the first four layer of the OSI-model [5], we need to define the layer provided
by the simulator we want to use for our simulation. We call this part the NetLayer. In
this tag we define the factory class of type ComponentFactory, which is able to create the
network layer of type AbstractNetLayer. In this case we use the SimpleNetFactory, which
creates a simple network layer with simple routines. We also pass two variables to define
the total bandwith for a node. For every network layer we have to define a latency model,
which will be used to calculate the latency while transmitting messages. In this case we
use a simple static latency model. Please check the package for other network layers and
latency models.

The following part is most important, because its referencing to our new node factory.
The Tag called ComponentFactory defines the class from which the simulator will get all
the nodes needed to create the simulation. The Simulator will automatically detect it as a
ComponentFactory and will call the method createComponent to create the nodes.

Then we can add the Monitor Tag to define Analyzers we want to use for analyzing
our overlay during a simulation. These analyzers are important for evaluation purposes.
In Chapter The Evaluation part we will discuss how we create those analyzers and how

30

3.13. CREATING NETWORKS WITH MY OVERLAY

they will work. First, we pass the start and stop time for the analyzers. By default we
begin monitoring from 0 to the finishTime value. Then we pass the analyzers one by one.
In our example we have one analyzer called the MessageAnalyzer.

Now we define the hosts and groups the Simulator is going to create after creating our
nodes with the given node factory. This part is statically called HostBuilder. We created
one node and two groups of nodes. The reason we create groups of nodes is dependent
on our action file. The action file is equal to a script file holding the commands for the
nodes they must execute in a simulation. To create a single node we need to define a Host
tag, for groups we need to define Group tags. In addition to these tags we need to pass
unique names for these Hosts and Groups. The attribute called groupID stands for the
unique name. For defining groups of nodes we need to pass a size value for the group. This
attribute causes the simulator to group nodes to one group, passing a command to that
group results in passing this command to all nodes in this group.

In the last part we define the scenario type. There are two scenario types we can use
in the current version of PeerfactSim.KOM (v3.0). The first is CSVScenarioFactory and
the second is DOMScenarioFactory. The first needs a parameter called actionFile. This
file contains all commands line by line, which will be executed on the nodes referenced to
in that action file. The second scenario type is able to read the commands directly within
the Scenario Tag. The scenario tag needs an attribute called componentClass, which
references to the component acting as a host in the simulation. In this case we reference to
MyOverlayNode. This causes the simulator to pass all commands in the actions part to the
component of type MyOverlayNode, which is already well defined as ComponentFactory in
the configuration file. In the following two Listings you will see those two scenario types,
which you can use for simulation.

Listing 3.20: Example: The actions file
1 #jo i n network
2 peer1 1m j o i n
3 group1 2m−50m j o i n
4 group2 40m−150m j o i n
5

6 #l e t s stay i d l e
7 peer1 500m i d l e
8 group1 510m i d l e
9 group2 530m i d l e

10

11 #now l e t s send some messages
12 peer1 630m sendmessage
13 group1 640m sendmessage
14 group2 660m sendmessage
15

16 #a l l nodes l e av ing now the network
17 peer1 800m leave
18 group1 820m leave
19 group2 840m leave

31

3.14. EVALUATION OF THE NEW OVERLAY

Listing 3.21: Example: The actions directly read in from configuration file by DOMSce-
narioFactory

1 <Scenar io c l a s s="de . tud . kom . p2psim . impl . s c ena r i o . DOMScenarioFactory">
2 <Action groupID="peer1 " time="1m">j o i n</Action>
3 <Action groupID="group1" time="1m">j o i n</Action>
4 <Action groupID="group2" time="1m">j o i n</Action>
5 <Action groupID="peer1 " time="2m">i d l e</Action>
6 <Action groupID="group1" time="2m−3m">i d l e</Action>
7 <Action groupID="peer1 " time="3m">sendmessage</Action>
8 <Action groupID="group1" time="3m−5m">sendmessage</Action>
9 <Action groupID="peer1 " time="4m">leave</Action>

10 <Action groupID="group1" time="7m−9m">leave</Action>
11 <Action groupID="group2" time="10m">leave</Action>
12 </Scenar io>

Typical commands in the actions file are join, idle, sendmessage and leave. But how
does the node get this command and execute it? In order to do that, we implement methods
in the component class with names equal to the commands in the acion part. This means
that we need to create a method in our component MyOverlayNode, called join, calling
results in initiating the join operation. Also the commands idle, sendmessage and leave
must be implemented.

3.14 Evaluation of the new Overlay
In this section we will discuss how to create an analyzer and how they will work in a
simulation. In Listing 3.19 we saw only one analyzer tag referencing to MessageAnalyzer.
This analyzer will be automatically detected by the scenario parser before the simulation
is started. The fact is, all analyzers will be hooked automatically into the simulator core
before it starts. This means that the simulator will notify all analyzers on the important
parts of a simulation like message transmission, operation initiation and similar points.
Depending on what kind of analyzer we define, our analyzers will be hooked automatically.

There are four different analyzer types we can use. These are TransAnalyzer, NetAna-
lyzer, OperationAnalyzer and ChurnAnalyzer. In the following we describe those analyzers
in detail (Please check comments in java files):

• TransAnalyzer: TransAnalyzers receive notifications when a network message is
sent, or received at the transport layer. This means if we send a message from
our node, then a method will be called, which must be implemented in our an-
alyzer implementing TransAnalyzer. Also receiving messages on our node calls
a method in TransAnalyzer. Every time a node sends a message, the transMs-
gSent(AbstractTransMessage msg) method is called on the TransAnalyzer. Even
if a message arrives on a node, the transMsgReceived(AbstractTransMessage msg)
method will be called on the TransAnalyzer.

• NetAnalyzer: NetAnalyzers receive notifications when a network message is send,
received or dropped at the network layer. This type of analyzer is similar to Trans-

32

3.14. EVALUATION OF THE NEW OVERLAY

Analyzer but referencing to a lower layer of the simulator. When a message gets
transmitted from one host to another on the network layer, one of the two methods
netMsgSend(NetMessage msg, NetID id) and netMsgReceive(NetMessage msg, NetID
id) will be fired, notifying about a message transmission on the network layer. There
is a third method netMsgDrop(NetMessage msg, NetID id), which will be called if a
message is going to be dropped in case of a non-existent receiver for this message.

• OperationAnalyzer: OperationAnalyzers receive notifications when a operation
is finished either with or without success. With this analyzer we can hook every
operation initation and completion. One example is to catch the join operation after
finishing, in order to be informed when to check the node for its state. This analyzer is
the most used one in evaluations. When an operation gets executed directly or by the
simulator, the method operationInitiated(Operation<?> op) will be fired, signalizing
an operation initiation. Also finishing an operation is by default called manually.
This means we could lastly call the method operationFinished(boolean success) in the
execute method or after receiving some reply in our operation. This depends on the
type of our operation.

• ChurnAnalyzer: ChurnAnalyzers receive notifications when the network connec-
tivity has been changed of churn affected hosts. Everytime one hosts connection
status changes, the method onlineEvent(Host host) or offlineEvent(Host host) will
be called. These two methods signalize the connection state on the network layer.
Like your internet connection could lag or crash for a while, in a simulation the
method offlineEvent(Host host) would be called to signalize that your host have no
connection to the network.

Before we discuss the MessageAnalyzer class we look at its content:

Listing 3.22: Example: Showing one analyzer for analyzing messages
1 pub l i c c l a s s MessageAnalyzer implements Analyzer , TransAnalyzer {
2

3 pr i va t e S t r ing r e c e i v e I n f o="" ;
4 pr i va t e S t r ing sendIn fo="" ;
5

6 pub l i c MessageAnalyzer () {}
7

8 pub l i c void s t a r t () {
9 // t h i s method i s c a l l e d when when ana l y ze r

10 // i s s t a r t e d by the s imu la tor
11 }
12

13 pub l i c void stop (Writer output) {
14 // i s c a l l e d a f t e r f i n i s h i n g the s imu la t i on or the ana l y ze r

i t s e l f .
15 // here we shou ld do some output , l i k e wr i t i n g in f i l e s ,
16 // wr i t i n g to conso l e .
17 // o b j e c t ’ output ’ i s r e f e r enced to the conso l e .

33

3.14. EVALUATION OF THE NEW OVERLAY

18 t ry
19 {
20 output . wr i t e (" Fin i shed ␣message␣ analyze \n") ;
21 output . wr i t e ("Resu l t s : \ n") ;
22 output . wr i t e (t h i s . r e c e i v e I n f o) ;
23 output . wr i t e (t h i s . s endIn fo) ;
24 }
25 catch (IOException ex) { /∗ error ∗/ }
26 }
27

28 pub l i c void transMsgReceived (AbstractTransMessage msg) {
29 //we add the new ar r i v ed message to our s t r i n g o b j e c t
30 t h i s . r e c e i v e I n f o+= "New␣message␣ r e c e i v ed : ␣"+msg . getPayload ()

+"\n" ;
31 }
32

33 pub l i c void transMsgSent (AbstractTransMessage msg) {
34 //we add the sen t message to our s t r i n g o b j e c t
35 t h i s . s endIn fo+= "New␣message␣ sent : ␣"+msg . getPayload ()+"\n" ;
36 }
37 }

Every analyzer we create, must implement the Analyzer interface. It provides the
two methods start() and stop(). The first signalizes the start of this monitor, the second
method is called after finishing the simulation or reaching the monitors stop time.

In MessageAnalyzer we want to catch up all messages received and sent by all nodes.
While the simulation is running, we put all message informations into Strings and print
them to the console when the stop method is called. Another way would be the creation
of files to create diagram specific files (e.g. GNUPlot) to do better evaluation.

The following Listing 3.23 shows where to add the correct tags for our new monitor
MessageAnalyzer.

Listing 3.23: Example: Adding the analyzer correctly to the configuration file
1 <Monitor c l a s s="de . tud . kom . p2psim . impl . common . DefaultMonitor " s t a r t="0m"

stop="\$ f in i shTime ">
2 <Analyzer c l a s s="de . tud . kom . p2psim . example . MessageAnalyzer "/>
3 </Monitor>

We suggest to create the analyzer, implement the analyzer interface and all needed
analyzer types. Then reference to this analyzer by adding the Analyzer Tag to the Monitor
Tag in your configuration file.

34

Chapter 4

FAQ

This chapter answers some common and implementation based questions.

4.1 Common questions

Q: Is it possible to create full functional applications running on the simulator?
Yes, you can create any kind of peer-to-peer based application running on the simulator.

4.2 Implementation

Q: Can i run overlays without operations?
Yes, it is possible to run commands without encapsulating them in operation classes. Since
the simulator calls the methods defined in the action file, its enough to implement those
methods executing all commands during a simulation. Operations in PeerfactSim.KOM
are created according to the Command-Design Pattern [2].

Q: Do i have to use all interfaces presented in this tutorial to create simple
network based applications in PeerfactSim.KOM?
No, the only things you have to use are the components for the network layer. When we
are going to send messages in our applications, we have to use the transport layer, which
we have to "create" and then use. Every component sending messages has to be created
as a host using the network layer and transport layer to send messages to other hosts. So
every application sending messages have at least a fully initialized host component. All
messages sent by these hosts must be from type Message.

Q: Im using OperationCallbacks but none of the two methods calledOpera-
tionFailed and calledOperationSucceeded gets called even if my operation gets
started or finishes. Why?
These two methods get only called if you call the method operationFinished(boolean suc-
cess). This method signalizes that your operation is finished successfully or not. For
example in an operation you send a message and wait for a reply. After you get the

35

4.2. IMPLEMENTATION

reply you call operationFinished(true) which calls calledOperationSucceeded on the Oper-
ationCallback. When you get a messageTimeoutOccured while waiting for a reply you
should call the method operationFinished(false) results in calling calledOperationFailed.

Q: I want to create an analyzer for my overlay which counts all messages
sent by all hosts. How do i do that?
The first step is to create the analyzer class. To sign the class as an analyzer, you have
to implement it as defined in the interface Analyzer. The second is to decide which type
of analyzer we want to get a counter on the messages sent by the hosts. This let us
use the TransAnalyzer Interface for the analyzer class which informs us about message
transmissions on the transport layer. So our class needs to implement this interface. Third,
we have to summarize all messages sent by the host on our TransAnalyzer. When the
simulation or the monitor gets finished the method stop gets called, which gives us the
ability to put the result out by passing the result to the Writer object which is referenced
to the console. Fourth, we need to modify the configuration file and add the Monitor tag
with the analyzer tag referencing to our new analyzer class. The following Listings show
these steps in detail.

Listing 4.1: Example: A simple message counter analyzer
1 pub l i c c l a s s MessageAnalyzer implements Analyzer , TransAnalyzer {
2

3 pr i va t e i n t messages = 0 ;
4

5 pub l i c void s t a r t () {
6 // t h i s method g e t s s t a r t e d when ana l y ze r
7 // i s s t a r t e d by the s imu la tor
8 }
9

10 pub l i c void stop (Writer output) {
11 // here we shou ld do some output , l i k e wr i t i n g in f i l e s
12 // wr i t i n g to conso l e
13 // o b j e c t ’ output ’ i s r e f e r enced to the conso l e
14 t ry
15 {
16 output . wr i t e (" Fin i shed ␣message␣ analyze \n") ;
17 output . wr i t e ("Messages ␣ sent : ␣"+messages+"\n") ;
18 }
19 catch (IOException ex) { /∗ error ∗/ }
20 }
21

22 pub l i c void transMsgReceived (AbstractTransMessage msg) {
23 //we ignore message a r r i v e s
24 }
25

26 pub l i c void transMsgSent (AbstractTransMessage msg) {
27 t h i s . messages++;
28 }
29 }

36

4.2. IMPLEMENTATION

Listing 4.2: Example: Adding the Analyzer to the configuration file
1 <Monitor c l a s s="de . tud . kom . p2psim . impl . common . DefaultMonitor " s t a r t="0m"

stop="\$ f in i shTime ">
2 <Analyzer c l a s s="de . tud . kom . p2psim . over lay . pastry . ana ly z e r s .

MessageAnalyzer "/>
3 </Monitor>

Q: How do i pass parameters to the commands used in the actions file?
All commands used in the actions file, are able to receive primitive parameters. This
means you can pass integers and strings easily. Since all commands used in the actions
file must be implemented as methods on the main component running in the simulation,
these methods must accept those parameters. Passing objects to the commands must be
done by using the Parser Interface. Lets say you want to pass an object holding a string
object to a command, the first is to create the parser class to parse the string value and
create the object. The Simulator detects automatically the parameter type your command
methods accepts and uses the correct parser to create the parameter object to pass it to
the command. The following Listing shows this in detail.

Listing 4.3: Example: Parsing objects to commands
1 pub l i c c l a s s MySimpleParser implements Parser {
2

3 // getType () h e l p s the s imu la tor to d e t e c t
4 // the parameter type to pass to the command
5 pub l i c Class<ParameterObject> getType () {
6 re turn ParameterObject . c l a s s ;
7 }
8

9 pub l i c ParameterObject parse (S t r ing value) {
10 re turn new ParameterObject (va lue) ;
11 }
12 }
13

14 pub l i c c l a s s ParameterObject {
15 pr i va t e S t r ing va l ;
16

17 pub l i c ParameterObject (S t r ing va l) {
18 t h i s . va l = va l ;
19 }
20

21 pub l i c S t r ing getValue () {
22 re turn t h i s . va l ;
23 }
24 }

Now modify the configuration file by adding the ParamParser tag to it.

Listing 4.4: Example: Adding the Analyzer to the configuration file
1 // pas s ing the ParamParser tag to the Scenar io tag in the
2 // c on f i gu r a t i on f i l e r e s u l t s in r e g i s t e r i n g i t as a parameter
3 // par s e r f o r the commands used in the a c t i on s f i l e .

37

4.2. IMPLEMENTATION

4 <Scenar io c l a s s="de . tud . kom . p2psim . impl . s c ena r i o . CSVScenarioFactory"
a c t i o n sF i l e="\$ ac t i on s ">

5 <ParamParser c l a s s="de . tud . kom . p2psim . example . MySimpleParser"/>
6 </Scenar io>

Implement the command in your component which accepts this new parameter type.

Listing 4.5: Example: Passing objects to commands
1 pub l i c void h e l l o (ParameterObject ob j e c t) {
2 System . out . p r i n t l n (ob j e c t . getValue ()) ;
3 }

The command which will be parsed by the MySimpleParser class and then passed to
the hello method.

Listing 4.6: Example: The command passing parameter objects
1 #the command h e l l o pas s e s the s t r i n g value HelloWorld to the method
2 #he l l o with parameter ParameterObject which i s parsed by the
3 #MySimpleParser c l a s s .
4

5 peer1 1m j o i n
6 peer1 2m h e l l o HelloWorld
7 peer1 3m leave

38

Bibliography

[1] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a common
API for structured peer-to-peer overlays. Proc. of IPTPS, 3, 2003.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 1995.

[3] http://peerfact.kom.e-technik.tu darmstadt.de/. Peerfactsim.kom. The discrete event
based P2P Simulator written in Java, 2006.

[4] M. Ripeanu and I. Foster. Mapping the Gnutella Network: Macroscopic Properties
of Large-Scale Peer-to-Peer Systems. First International Workshop on Peer-to-Peer
Systems (IPTPS), 68, 2002.

[5] H. Zimmermann. OSI Reference Model–The ISO Model of Architecture for Open
Systems Interconnection. Communications, IEEE Transactions on [legacy, pre-1988],
28(4):425–432, 1980.

39

BIBLIOGRAPHY

40

List of Figures

3.1 A simple ring topology represented by integer ID’s 12
3.2 A simple message routing process . 28

41

LIST OF FIGURES

42

Listings

3.1 Example of OverlayID . 12
3.2 Putting id object and methods in MyOverlayID 13
3.3 Example implementation of OverlayContact 15
3.4 Example implementation of OverlayRoutingTable 16
3.5 Example implementation of MyOverlayMessage 18
3.6 A simple message class for an overlay . 19
3.7 The base overlay node . 20
3.8 The message handler for listening on messages 20
3.9 Registering the message handler for listening 21
3.10 Handling message incomes . 22
3.11 A simple operation class . 22
3.12 A simple operation callback listener . 23
3.13 Use OperationListener . 23
3.14 The BootstrapManager . 24
3.15 The abstract application class for our applications 25
3.16 The simple application class . 25
3.17 The component factory class for creating nodes 26
3.18 The component factory class for creating applications 27
3.19 A simple configuration file . 29
3.20 The CSVScenarioFactory example . 31
3.21 The DOMScenarioFactory example . 32
3.22 The MessageAnalyzer example . 33
3.23 Configure the Analyzer . 34
4.1 Analyzer: Message Counter . 36
4.2 Adding the analyzer to the configuration file 36
4.3 Analyzer: Parsing objects to commands . 37
4.4 Adding the analyzer to the configuration file 37
4.5 Command getting objects as parameters 38
4.6 The command passing parameter objects 38

43

