
.

How To Use
PeerfactSim.KOM
Visualization
Julius Rückert, Leo Nobach

KOM - Multimedia Communications Lab, Document Version 0.4

Contents

1 Introduction 2
1.1 When should I use PeerfactSim.KOM Visualization? . 2
1.2 When should I avoid using it? . 2
1.3 What to do to visualize my simulation? . 2

2 Hint: Usage of GUIRunner 4

3 Use PeerfactSim.KOM Visualization with preconfigured scenarios 5
3.1 Basic usage . 5
3.2 Show a metric for each node . 7
3.3 Usage of the Filter . 8
3.4 Export gnuplot files . 9

4 Key concepts of the visualization backend 10
4.1 Analyzer backend interface . 10
4.2 Overlay adapters . 10
4.3 Schematic Positioners . 11
4.4 Superordinate Multi Positioners . 11

4.4.1 The Hierarchical Positioner . 12

5 Configuring scenarios to use PeerfactSim.KOM Visualization 13
5.1 Basic configuration . 13
5.2 Display generic node interaction . 13
5.3 Adding overlay adapters . 14
5.4 Advanced: Adding superordinate positioners . 14

6 Implementing new overlay adapters 15

7 Advanced concepts 16
7.1 Writing a new transformer (optional) . 16
7.2 How to use the bitmap based distribution . 18

7.2.1 Let GNP derive host positions from a bitmap . 18
7.2.2 Visualize the hosts on the map . 19

1

1 Introduction

1.1 When should I use PeerfactSim.KOM Visualization?

PeerfactSim.KOM Visualization is designed to visualize the state and network activity of the Peerfact-
Sim.KOM simulation framework for many purposes, e.g.

1. to help developers of components, especially overlays, to find bugs and to support the development
process in general,

2. to show the operation of peer-to-peer networks to students for educational purposes,

3. to present peer-to-peer technology to customers and other interested parties.

4. to measure performance metrics (for small- and medium-sized network scenarios).

If you want to use PeerfactSim.KOM Visualization for one of these purposes, it is likely that it will help
you.

1.2 When should I avoid using it?

In few cases it is likely that PeerfactSim.KOM Visualization will not help you, like

1. to try out scalability bounds of a network in terms of peer count and message count if you require
a fast image rendering rate. PeerfactSim.KOM Visualization was developed to show each quantum
of network activity to the user, like single messages and operations. Configuring scenarios bigger
and even bigger would render an unreadable image and its generation process would consume a lot
of realtime performance. Testing results show that an average scenario greater than 80 nodes will
result in a maximum image rendering rate less than 1 image per second on a common workstation
(Centrino Duo, 2GB RAM) and a CPU fan making a lot of noise.

Exception: You can still use the Gnuplot Export function. There are no realtime requirements for
it, so there is no node/message count limit for good performance. But prepare to wait a little bit
for the result to show up.

1.3 What to do to visualize my simulation?

First, make sure if your configuration file (one of the XML files in the directory config) is preconfigured
for visualization. Follow the chapter Configuring scenarios to use PeerfactSim.KOM Visualization how a
preconfigured file looks like and configure it, if necessary. For convenience, preconfigured files should
be placed into the subdirectory config/visualization.

For configuration of this file, you possibly need overlay adapters. The chapter Implementing new overlay
adapters will tell you how to do this.

2

An activity diagram that I suggest for getting your scenario configuration visualized.

Don’t be scared by the terms used in here. They will be explained in the following chapters. Note
that you do not always need an overlay adapter for the visualization of an overlay. Read the chapter
Configuring scenarios to use PeerfactSim.KOM Visualization for more on that.

3

2 Hint: Usage of GUIRunner

You can run PeerfactSim.KOM using a GUI. Simply run the class de.tud.kom.p2psim.GUIRunner. The
window that allows you to select available configuration files will help you as a beginner as well as a
professional to quickly run the configuration scenario you want.

The window will show a tree of recently opened and other available configuration files in the directory
/config. Just double-click on one of them to run the preconfigured scenario in PeerfactSim.KOM. The
simulation will start, and if PeerfactSim.KOM Visualization is configured for this scenario, the visualization
component will pop up.

As you can see there is an option to run the visualization stand-alone to load recordings.

4

3 Use PeerfactSim.KOM Visualization with preconfigured scenarios

A scenario needs to know how it is supposed to be visualized. This means that each scenario configu-
ration in PeerfactSim.KOM needs to have a visualization-specific part. If you want to preconfigure an
unconfigured scenario, please read the following chapters how to do this.

For convenience, all preconfigured scenario XML files are placed in /config/visualization.
Simply run PeerfactSim.KOM with a preconfigured scenario. I recommend GUIRunner, but feel free to

run it via command line e.g. The simulation will start and the visualization window will pop up, if no
exception was thrown during the simulation process.

3.1 Basic usage

The main components of the GUI are designed like in a basic multimedia player. Play, Pause, Stop,
Forward, Reverse, the slider on the bottom are derived from common player GUIs. Just try it out.

The main component after startup

5

Further well-known commands are:

1. Save your visualized scenario to disk by pressing the Save to File button.

2. Load your scenario from disk by pressing Load from File.

You can use your mouse (or keyboard) in the visualization window to modify your view:

1. Zoom in using your mouse wheel (pgUp/pgDn).

2. Drag the view to a position while left-clicking into it (arrow keys).

Displaying metrics and attributes of a single entity: Click on a node or an edge. You will see all of
its attributes and metrics on the side panel. By clicking into empty space, you will see the attributes of
the whole scenario.

The main component during a scenario running

6

3.2 Show a metric for each node

The metrics panel is located at the sidebar. This is a list of all available metrics in the scenario, splitted
up in metrics of nodes, edges and scenario metrics. Just select/deselect one or more of them (check
box). Selected metrics will show up directly on the entities in the graphical view.

Metric "‘NetID"’ selected in main component

7

3.3 Usage of the Filter

The Filter’s purpose is to disable the rendering of connections or messages that are irrelevant for visual-
ization or disturbing it. For example if you don’t want to show all download requests, but only routing
table references in a network, just select the events you want to see.

All edges visible

8

All edges filtered except for Replies

3.4 Export gnuplot files

Select the Export to Gnuplot button to generate a gnuplot from the scenario. Select one of the possible
modes in the tabs:

1. Select the entities (either nodes or edges) you want to compare to each other, select which metric
to use as value.

2. Select the metrics of the currently selected object to export its metrics to Gnuplot.

Note that only numerical metrics can be visualized as a graph, so only these ones are listed here.

9

4 Key concepts of the visualization backend

This chapter is an introduction to the concepts of the backend to generate visualization-relevant events.
Knowledge about the concepts is required if you are writing overlay adapters or positioners, and it is rec-
ommended for configuring scenarios. You do not need to read this if you only want to use preconfigured
scenarios.

4.1 Analyzer backend interface

The visualization has a backend implementing the interface Analyzer1 of PeerfactSim.KOM . Its purpose
is to extract visualization-relevant events and convert them into a viewable format that is put into an
event timeline. However, it needs help by classes that have to be implemented for each overlay in order
to extract overlay-specific events.

4.2 Overlay adapters

An overlay adapter collects overlay-specific visualization information out of the runtime behavior of an
overlay implementation. This includes the following things:

1. If a host is joining the scenario, it is able to add attributes to the node that describe its overlay-
specific behavior (e.g. its role in the overlay like server or client, or the document count).

2. If a visualization-relevant event occurs (maybe caught by an event listener or continuous state
check on each message), it changes the attribute value at the node of it to the new value (e.g. a
host’s document count has been increased). and puts this event onto the timeline.

3. It creates coloured connections between nodes if nodes somehow are connected to each other,
according to the definition of connection of an overlay (e.g. the successor/predecessor relation in
Chord).

4. It creates flash events2, like flash edges, if an important message has been exchanged between
nodes.

5. It defines, which schematic positioner shall be used to set a position for a host implementing the
overlay of the adapter (e.g. a ring in Chord).

The overlay adapters register for each overlay implementation (in most cases only one) and each event
(message, operation) they are interested in. They will be called by the analyzer if the event occurs.

1 The subinterfaces OperationAnalyzer, TransAnalyzer, NetAnalyzer, ConnectivityAnalyzer of
de.tud.kom.p2psim.api.analyzer.Analyzer

2 Events without a relevant duration that shall only be shown a short time

10

4.3 Schematic Positioners

A positioner is an object that defines a schematic position for a specific host.
In the visualization GUI you can toggle between net position and schematic position. The net posi-

tion is defined by the host itself. The schematic position has to be determined by a positioner of the
PeerfactSim.KOM Visualization .

Its function is decoupled from the overlay adapter as there can be many instances of positioners, one
instance per overlay network of an overlay implementation, for example.

There are some generic positioners placed in de.tud.kom.p2psim.impl.util.vis.analyzer.posi-
tioners.generic you can use. If no positioner is given by the overlay adapter (null) the positioner
defaults to FCFSPartitionRingPositioner.

4.4 Superordinate Multi Positioners

What if there is a node that implements two overlays? Which positioner to take to determine its
schematic position? The default behavior is to take the first overlay given in the scenario configura-
tion to determine the position. Only if the positioner is null or can’t deliver a position, the second
overlay adapter’s positioner is used and so on.

You can alter these semantics by selecting another multi positioner.

11

4.4.1 The Hierarchical Positioner

This positioner is thought for some kind of hierarchical networks, in which a supernet using an overlay
implementation connects many supernet nodes, and each of the supernet node connects many of the
subnet nodes using another overlay implementation. Examples for these networks are GIAChord and
ChordGIA, here the first name indicates the supernet, the second name the subnet to be used.

The result of the supernet's positioner

The result of the positioners assigned to each subnet

The result of the multi positioner using these examples.

1

Scale
factor

Concept of the hierarchical positioner

12

5 Configuring scenarios to use PeerfactSim.KOM Visualization

5.1 Basic configuration

A scenario can be configured for PeerfactSim.KOM Visualization by adding the visualization analyzer1 to
it like in the following example.

<Monitor class="...">

<Analyzer class="de.tud.kom.p2psim.impl.util.vis.analyzer.VisAnalyzer"/>

</Monitor>

This example will display hosts joining and leaving the scenario, but no i backportnteraction between
the nodes themselves, like messages they pass to each other, overlay-specific internal states etc.

5.2 Display generic node interaction

To extend the displaying of nodes with interaction between them, you can try out a special feature. Just
add the XML attribute messageEdges="true" to the analyzer tag.

<Monitor class="...">

<Analyzer class="de.tud.kom.p2psim.impl.util.vis.analyzer.VisAnalyzer"

messageEdges="true"/>

</Monitor>

This will paint an edge for each message between nodes. The metric "‘Class name of message"’ will
show you the Java class name of the subtype of Message2 sent between nodes.

Note that this is only a workaround for overlays with unimplemented OverlayAdapters. The result
could lead to a flood of irrelevant messages between hosts (like ping/pong messages in GIA), depending
on the complexity of the overlay implementation. In this case use the edge filter or write an overlay
adapter (explained in the further chapters), the latter will be the most expressive method, but it requires
some lines of code to be written.

1 de.tud.kom.p2psim.impl.util.vis.analyzer.VisAnalyzer
2 de.tud.kom.p2psim.api.common.Message

13

5.3 Adding overlay adapters

Overlay adapters allow the implementation of overlay-specific visualization behavior. They are located
in the classpath de.tud.kom.p2psim.impl.util.vis.analyzer.ol and subclass
de.tud.kom.p2psim.impl.util.vis.analyzer.OverlayAdapter How to write overlay adapters will be
explained in the further chapters.

<Monitor class="...">

<Analyzer class="de.tud.kom.p2psim.impl.util.vis.analyzer.VisAnalyzer">

<OverlayAdapter class="[Class]">

<OverlayAdapter class="[Class 2]">

<OverlayAdapter class="[Class 3]">

...

</Analyzer>

</Monitor>

Simply add them to the Analyzer tag (Substitute "‘[Class x]"’ with the classpath of your overlay adapter,
of course). Most scenarios only need one analyzer to be added, but feel free to add one overlay adapter
for any overlay implementation your scenario holds (if available).

Notice: The ordering of the adapters in the XML document is important! If no multi-positioner is
added, the semantics default to this: The schematic position of the first node is defined by the first
overlay adapter, if he cannot supply a position for it, the second adapter is asked for and so on.

5.4 Advanced: Adding superordinate positioners

In some situations it is relevant to use superordinate multi-positioners handling different positioning
concepts to achieve a special goal. Just add them th the monitor.

<Monitor class="...">

<Analyzer class="de.tud.kom.p2psim.impl.util.vis.analyzer.VisAnalyzer">

<MultiPositioner

class="de.tud.kom.p2psim.impl.util.vis.analyzer.positioners.multi.HierarchicalPositioner"

scaleFactor="0.13f"/>

<OverlayAdapter

class="de.tud.kom.p2psim.impl.util.vis.analyzer.ol.chord.ChordAdapter"/>

<OverlayAdapter

class="de.tud.kom.p2psim.impl.util.vis.analyzer.ol.GIA.GIAAdapter"/>

</Analyzer>

</Monitor>

In this example the hierarchical positioner is added to the analyzer. If you set it, the semantics of the
following overlay adapters will be changed: The first overlay adapter is treated as the subnet, the second
one as the supernet connecting all the subnets. The scale factor parameter (special parameter, only for
Hierarchical Positioner) is used for scaling the subnets to make them smaller than the super net and
let them fit into the picture. Please look into the Javadoc for special parameters for your superordinate
positioners.

14

6 Implementing new overlay adapters

Create a class file that extends OverlayAdapter1 and implement its missing methods. For convenience,
you should put this class and further classes of your overlay adapter into a new subpackage of
de.tud.kom.p2psim.impl.util.vis.analyzer.ol.

The abstract subclass OverlayAdapter is extensively documented, so you should have no problems
understanding the purpose of the methods. However, there is an example Java source file2 that you
should consider for your development process. It uses example commands for manipulating visualization
events and explains their effect.

Monkey see, monkey do: If the information in this example class is not enough, try to look into
existing overlay adapters, like Napster, Chord or GIA how they are implemented and how they extract
visualization information out of the overlay implementations. They should be well-documented.

1 de.tud.kom.p2psim.impl.util.vis.analyzer.OverlayAdapter
2 de.tud.kom.p2psim.impl.util.vis.analyzer.ol.example.ExampleOverlayAdapter

15

7 Advanced concepts

7.1 Writing a new transformer (optional)

The following steps are not neccessary if a transformer for the type of NetPosition used in your scenario
was already implemented. To check this take a look at the package
“de.tud.kom.p2psim.vis.adapter.analyzers.transformNetPositions”.

If there is no transformer for the special kind of NetPosition that you need, create your own one. To
explain the general proceeding for this, let’s have a look on an simple example: the class “GnpPosition-
Transformer”.

The whole class looks like this:

package de.tud.kom.p2psim.vis.adapter.analyzers.transformNetPositions;

import de.tud.kom.p2psim.impl.network.gnp2.topology.GnpPosition;

import de.tud.kom.p2psim.vis.util.visualgraph.Coords;

public class GnpPositionTransformer implements INetPositionTransformer<GnpPosition>{

@Override

public Coords transform(GnpPosition netPos) {

// Here the tranformation takes place

float x = new Double(netPos.getGnpCoordinates(0)).floatValue();

float y = new Double(netPos.getGnpCoordinates(1)).floatValue();

Coords coords = new Coords(x,y);

return coords;

}

}

This transformation is very simple. There is only one method. On invocation of this method we are
given an instance of GnpPosition and have to decide how to extract an 2-dimensional representation of
this position. In this case we just pick out the first two coordinates and convert them to Float. In other
cases this could be a more difficult computation.

After writing the transformer you have to register it, so the visualization can use it. Therefore open
the class “de.tud.kom.p2psim.vis.adapter.analyzers.AVisAnalyzer” and take a look at the method with
the signature “public Coords transformPosition(NetPosition netPos)”. There you will find the following
lines of code:

// Is it a SimpleEuclidianPoint?

if(netPos instanceof SimpleEuclidianPoint){

coords = new SimpleEuclidianPointTransformer()

.transform((SimpleEuclidianPoint) netPos);

// Is it a GnpPosition?

16

} else if(netPos instanceof GnpPosition){

coords = new GnpPositionTransformer()

.transform((GnpPosition) netPos);

// Is the type not supported?

} else {

coords = new Coords(0,0);

System.err.println(this.getClass().getName()+

" - There is no transformer for

the given type of NetPosition.");

}

To support the new type of NetPosition you have to add another “else if”-branch according to the
existing ones. After this steps, the new NetPosition type can be used and hosts should be placed the right
way on the visualization window.

17

7.2 How to use the bitmap based distribution

In the following section I will describe how you can use the bitmap based distribution to create nice
looking visualizations based on a map. For this purpose we use a special mode of the GNP network to
derive host positions from a bitmap instead of using a gnp_file. After that we choose a picture for the
background inside the visualization interface.

The resulting visualization could then look like this example:

7.2.1 Let GNP derive host positions from a bitmap

For this step it is important to use a 8-bit bitmap. You can create such a bitmap with hardly every picture
editing software by saving the bitmap in a mode where only 256 colors are used.

The distribution of hosts on the map is derived from the grey values of the used bitmap. Positions with
darker color are used with a higher probability as host positions than positions with lighter colors. A nice
distribution on a worldmap could be achieved by the following bitmap:

18

In order to use your own bitmap you have to copy it into a folder that the simulator is able to access
(I chose the config folder). Then you have to configure GNP to use the bitmap by editing the definition
of the netlayer in the config file. The result could look like these lines:

<NetLayer

class="de.tud.kom.p2psim.impl.network.gnp.GnpBitmapNetLayerFactory"

downBandwidth="50" upBandwidth="25" PbaPeriod="1"

experimentSize="$size" bitmapPath="config/worldmap.bmp" >

<LatencyModel

class="de.tud.kom.p2psim.impl.network.gnp.GnpLatencyModel" />

<BandwidthManager

class="de.tud.kom.p2psim.impl.network.gnp.GnpNetBandwidthManagerPeriodical" />

</NetLayer>

The important differences to the use of the normal GNP network are that we call the factory “GnpBitmap-
NetLayerFactory” instead of “GnpNetLayerFactory”. This factory does not support all attributes the
normal GNP supports. Therefore these attributes have been removed and a new attribute “bitmap-
Path="config/visualization/worldmap.bmp"” was added.

After this changes your simulation will use positions generated on base of the chosen bitmap.

7.2.2 Visualize the hosts on the map

In this step I assume that you already connected the visualization to the simulator. The visualization
interface shows up when launching the simulation.

What you have to do next is to choose the picture you want to use as background for the visualization.
This picture should have the same dimensions as the bitmap you used for the generation of the positions.
It does not need to include the different grey scale information the simulator needs to generate the dis-
tribution. In case of a map I recommend to use two different pictures. The bitmap to generate positions
and a second picture that only includes the information you need for an understandable visualization. I
chose the following one for the visualization:

19

You can choose the background image within the configuration window that shows up when you click

the button .

The configuration window shows up:

Here you can choose a background image and enable/disable the use of it.
(IMPORTANT: After this changes you have to restart the simulation)

20

	Introduction
	When should I use PeerfactSim.KOM Visualization?
	When should I avoid using it?
	What to do to visualize my simulation?

	Hint: Usage of GUIRunner
	Use PeerfactSim.KOM Visualization with preconfigured scenarios
	Basic usage
	Show a metric for each node
	Usage of the Filter
	Export gnuplot files

	Key concepts of the visualization backend
	Analyzer backend interface
	Overlay adapters
	Schematic Positioners
	Superordinate Multi Positioners
	The Hierarchical Positioner

	Configuring scenarios to use PeerfactSim.KOM Visualization
	Basic configuration
	Display generic node interaction
	Adding overlay adapters
	Advanced: Adding superordinate positioners

	Implementing new overlay adapters
	Advanced concepts
	Writing a new transformer (optional)
	How to use the bitmap based distribution
	Let GNP derive host positions from a bitmap
	Visualize the hosts on the map

