
PeerfactSim.KOM

The Peer-to-Peer System Simulator

-

Community Edition

Getting Started

Matthias Feldotto, Kalman Gra�

info@peerfact.org

September 19, 2013

This article is a short guide to getting started with PeerfactSim.KOM - The
Peer-to-Peer System Simulator. It is designed for people who want to do evalua-
tions on di�erent overlay networks with use of PeerfactSim.KOM. This document
helps the reader to con�gure the simulator, run simulations and evaluate them.
Furthermore he gets the knowledge to modify parts of the overlay implementation
such as to generate new statistics. This getting started document is presented
with a default con�guration of the chord overlay.
This guide is not a full documentation of PeerfactSim.KOM. For example, you

only �nd a rudimentary documentation of the underlying network layer without
any details of implementation. If you are interested in this part look at the
whole PeerfactSim.KOM documentation at the corresponding website1. Also, if
you are interested in creating complete new overlays you should read the separate
documentation for this purpose.

1http://www.peerfact.org

1

http://www.peerfact.org

Contents

1 The Simulator 3

1.1 The functional layers . 3
1.2 The work�ow of a simulation . 4

2 Setup and Start 4

2.1 Download and Setup . 4
2.2 Project structure . 5

2.2.1 Implementation . 5
2.3 Start of the simulator . 5

2.3.1 Run with GUI . 5
2.3.2 Run from console . 7
2.3.3 Batch simulations . 7
2.3.4 Evaluation of the simulation results . 8

3 Con�guration 9

3.1 Writing XML-Files . 9
3.2 XML-Files with includes . 14

4 Simulation 16

4.1 Examples for Chord . 18
4.1.1 JoinOperation . 18
4.1.2 LookupOperation . 21

5 Overlays and Applications 23

6 Analyzer 23

6.1 Example for chord . 24

7 Further Information 25

2

1 The Simulator

PeerfactSim.KOM is a �exible and mature event-based simulator for peer-to-peer (p2p)
systems written in Java. The events follow a timeline which assures sequential processing.
Events are part of so-called operations, which are generated either through the entities in the
simulation or through an external actions �le. Such an operation is for example a lookup in
a DHT (Distributed Hash Table). Operations help to trace actions on every layer, allowing
the protocols to store local state information easily and to react on operation timeouts.
Operations on various layers are decoupled which allows for the combined simulation and
evaluation of various protocols in parallel.

Si
m

ul
at

io
n

En
gi

ne

User Layer

Application Layer:
File Sharing, Benchmarking Workloads

Service Layer:
Management: SkyNet.KOM, P3R3O.KOM
Monitoring: SkyEye.KOM, Gossip-based

P2P Overlay Layer:
Chord, CAN, Kademlia, CDHT, VON

Gia, Gnutella 0.4 & 0.6, Globase.KOM

Transport Layer:
TCP, UDP

Network Layer:
Global Network Positioning, Static Model,

Bitmap-based, Mobile Ad Hoc Network

Churn Model:
KAD model, Exponential, Constant

Vi
su

al
iz

at
io

n
Lo

gg
in

g
G

nu
pl

ot
Ea

sy
 X

M
L

C
on

fig
s

Figure 1: Overview on PeerfactSim.KOM

1.1 The functional layers

The user layer can be used to de�ne strategies of various user types that are performed on
the application layer. The application layer de�nes the application logic and its character-
istics, such as �le sharing with typical Zipf-distributed request patterns. Various advanced
protocols are covered in the service layer. Management and control mechanisms for example
use system aggregation monitors to constantly optimize the p2p system con�guration. Such
services are neither part of the application nor the p2p overlay. The service layer functions
use the p2p overlay interfaces in order to provide general functional o�ers that improve
the quality of the p2p application or create a reusable functional building block for various
p2p applications. The p2p overlay layer covers structured (Chord, Re-Chord, Kademlia,
Pastry, CAN), unstructured (GIA, Gnutella 0.4, Gnutella 0.6, Napster) and information

3

dissemination (VON, pSense, Mercury) p2p overlays with corresponding interfaces (e.g. the
Key-based Routing API). The transport layer serializes messages and o�ers TCP and UDP
as implemented protocols, which can be used in combination with the network layer to obtain
realistic values for throughput, delay, jitter, loss and peer positioning. The network layer
implements besides static and simple network models also advanced models, like Global Net-
work Positioning (GNP) based on measurements from the PingER project. This network
model allows to run simulations based on realistic modules based on measurements. The
churn models (simulation of the temporal absence of hosts) that can be activated for time
intervals are either based on measurements (in KAD) or implement popular churn behavior
(exponential). In addition, there are isolation models which separate parts of the network
for certain time intervals.
The simulations are conducted by the simulation event queue, which manages and sched-

ules events in the simulation. Every event is processed at it scheduled time and logged for
further analysis. The logging is twofold. First, a history of relevant events is stored for
a later visualization. Second, a layer-wise protocol of the events is captured by analyzers
creating simulation statistic �les which can be directly fed into gnuplot. Thus, the simulator
helps to easily create plotted results.

1.2 The work�ow of a simulation

The work�ow within the simulator is very simple. An XML-based con�guration �le is used
to specify which implementations and con�gurations on which layers are to be used. The
con�guration �le further speci�es an action �le, which contains the operations that are to be
started by speci�c peers at speci�c time intervals. Once, the con�guration is completed, the
user may start a GUI to choose the con�guration �le and to observe the simulation status.
If a visualization module was chosen, the tra�c and recorded statistics over the simulation
time may be observed, once the simulation �nished. Independent of running simulations
visualized or headless, the plotable simulation statistics are automatically generated.

2 Setup and Start

2.1 Download and Setup

To run the simulator you need the JDK 1.6 and optionally Eclipse as IDE, for modifying the
code. If both is installed on your system, you should download the PeerfactSim.KOM soft-
ware bundle. The current version is available at the homepage of the Community Edition2.
Download the �le and unzip it to an arbitrary folder.
Simulating p2p systems, involves a lot of node-to-node communication through the sim-

ulated Internet. In order to determine appropriate estimations for the delay between two
simulated nodes, several types of network layers are o�ered. One of the most precise network
model, the global network positioning model, is based on measurements conducted in the
Internet. The resulting delay information between 100,000+ nodes is comprised in so-called
network coordinate �les. They are included in the folder config/data in the project, you

2http://www.peerfact.org

4

http://www.peerfact.org

also �nd them at the original simulator's website3. As the last step you have to compile the
project. The preferred way is to use Eclipse. Open Eclipse, import the project into your
workspace and build it. Otherwise you can use ANT as tool, then use the included script
build.xml. Now the simulator is ready to use.

2.2 Project structure

Before using the simulator we will look at the project structure. As you have seen, it is
prepared as an Eclipse project for easy use. You �nd the standard folders src (source
code), bin (compiled classes) and lib (external libraries) in the main hierarchy. The most
important folders are explained in the following:

� src: The whole source code can be found here.

� test: The source code of unit tests.

� bin: All compiled classes are generated here.

� lib: Several external libraries used in the project.

� icons: Graphics used in the graphical user interface.

� config: All con�guration �les for setting up simulations are found in this folder. For
detail information look at the chapter for con�guration.

� outputs: In this folder all simulated results will be saved as dat-�les.

2.2.1 Implementation

The implementation is strictly divided into the API (package org.peerfact.api) and the
implementation (package org.peerfact.impl). The main parts of the simulation are found
in the di�erent layers on the hosts. They all follow the component design pattern (cf. Fig.
2). In addition, the abstract factory pattern is implemented to generate instances of the
components. That means, that typically for instances of nodes a factory-class is available
which produces a node with desired properties. With this design pattern a con�guration is
easy managed (cf. Sec. 3).

2.3 Start of the simulator

There are several ways to start the simulator, the three most important ones should be
presented:

2.3.1 Run with GUI

Starting the simulator using a GUI is the most practical way for a �rst success. You can
start the GUI with the script in the main folder (runGui.bat or runGui.sh) or if you use
Eclipse by running the main class GUIRunner.

3http://peerfact.kom.e-technik.tu-darmstadt.de/�leadmin/data/measured_data/measured_data.xml.zip,
http://peerfact.kom.e-technik.tu-darmstadt.de/�leadmin/download/mod_measured_data.xml.zip

5

http://peerfact.kom.e-technik.tu-darmstadt.de/fileadmin/data/measured_data/measured_data.xml.zip
http://peerfact.kom.e-technik.tu-darmstadt.de/fileadmin/download/mod_measured_data.xml.zip

Figure 2: Components design pattern

(a) The GUI runner (b) The simulation progress window

Figure 3: Con�guring and running a simulation with the GUI

The GUI should appear on your screen (cf. Fig. 3a). On the right side of the window, a
list of con�gurations is presented. You can choose a con�guration �le to use in the simulation
(cf. Sec. 3 for details). On the left side of the window you can choose a seed for initializing
the random number generator and set some variables depending on the con�guration �le.
With the button �Start Simulation" the simulation will begin and you see the simulation
progress in a new window (cf. Fig. 3b). The simulation �les are editable using a text editor.
In the �rst instance, editing the simulator con�guration �les is not needed.
After the simulation �nishes, a visualization window opens (cf. Fig. 4) if it is con�gured

(cf. Sec. 3). Here you can see the simulated network topology, message transfers, and node
details in detail with di�erent properties and measures. The visualization can be saved for
later use.

6

Figure 4: The visualization window

2.3.2 Run from console

You can also start the simulations with scripts. This is even advisable to use on machines
without graphical user interface, for example dedicated simulation servers. To start a sim-
ulation you should use run.bat or run.sh with the relative con�guration �le path as �rst
parameter. Further parameters can be used for simulation parameters (cf. Sec. 3). The
follow separated with blanks and have the format <name>=<value>. To run directly from
Eclipse use the class SimulatorRunner. The same simulations are conducted, as when using
the GUI version.

2.3.3 Batch simulations

As third variant, you can start a complete set of simulations and con�gurations together
with one call. This enables us to run easily comparative evaluations of peer-to-peer over-
lays. It is set on top of the SimulatorRunner and reuses it for the single simulations. In
contrast, here we allow to give the variables multiple values. Together with a con�guration
�le and a number of seeds, the runner creates the combination of all variable combinations
together with the number of seeds. The BatchRunner allows two di�erent modes: On the
one hand a script can be generated which includes commands to start all needed simulations

7

and also the merging process. This script can be used on a cluster, on separate machines
or the single commands can be exported to di�erent formats. So it is very �exible, inde-
pendent of the underlying system architecture for big evaluations. On the other hand the
BatchRunner o�ers the possibility for the whole simulation in one call. Instead of writing a
script with commands, all simulations are executed directly by the runner. Through a fur-
ther parameter, the number of parallel executions in independent processes can be de�ned.
If a simulation fails, the runner automatically restarts this single failed simulation. In the
end it automatically calls the merging process.
To start a batch simulation you should use runBatch.bat, runBatch.sh or the class

BatchRunner. The �rst parameter is the number of parallel executions for the second mode.
If you only want to create scripts, use the number 0 as �rst parameter. With the second
parameter you de�ne the number of seeds used for each con�guration. It should be at least
20 for acceptable statistical results. The third parameter is the relative con�guration �le
path as in the runners before. Further parameters can be used for simulation parameters
(cf. Sec. 3). In contrast to the console mode, the parameters can have multiple value. You
have to specify them in the following format: <name>=<value1>,<value2>,<value3>.
The merging process completes the automatic evaluation. After all simulations have �n-

ished, it merges the output data and creates the single run, multiple-seed run and compar-
ative graphics.

2.3.4 Evaluation of the simulation results

After the simulation ends, you �nd statistics on the simulation and the �nal simulation results
in the outputs folder. To have an automatic process also in this part of the evaluation, an
intelligent monitoring process was developed.

Event

Monitor

Analyzer

Metric

(a) During the sim-
ulation

Plot

Script

Analyzer

Metric

Data

Analyzer

Metric

(b) During output steps and after the
simulation

Figure 5: The monitoring process

During the simulation (cf. Fig. 5a), di�erent events (for example the sending of a mes-
sage) are called in the monitor of the simulation. This monitor forwards the event to all
registered analyzers of the event type. The analyzers evaluate the event and save the needed

8

information in di�erent metrics. The metrics store the overall values and additionally values
grouped by the peers. After the simulation or during output steps (cf. Fig. 5b), the data
of the metrics are passed to data �les through the analyzers. Furthermore, the analyzers
produce gnuplot scripts �tting exactly to the metrics. In the end, if you have add your
gnuplot binary folder to the path variable of your operating system, the plots are produced
with an installed gnuplot binary from the script and data �les. As output we have three
di�erent types (for the data �les as well as for the scripts and graphics):

� output of all peers ordered by the time

� output grouped by the single peers

� output grouped by the single peers and sorted by their values

Each analyzer produces these three types of data and script �les once, and depending
on the included metrics, di�erent plot outputs. All plots are produced as PNG and as
monochrome PDF for the direct include in publications.
If we have run batch simulations, we have a hierarchy in the output folder which contains

all important �les in three di�erent layers:

1. Comparative evaluation: plot scripts and generated graphics for comparison with all
parameter combinations

2. Multiple-seed evaluation: data �les, plot scripts and generated graphics for one pa-
rameter combination with all merged seeds

3. Single evaluation: data �les, plot scripts and generated graphics for one con�guration
with one seed

By having the data �les, the gnuplot scripts and the graphics in the folders, the user can
modify them easily for di�erent purposes, for example for publishing in a paper. The result-
ing data �les and also the plots depend on the used analyzers.

3 Con�guration

In order to setup a simulation, a wide set of possible protocols and parameters may be
chosen. All this setup information is handled in con�guration �les. The simulation is
con�gured by XML-�les stored in the config-subfolder. There are two possibilities to write
a con�guration �le. The �rst one is to write every line of the �le for yourself and the second
one is to use prede�ned XML �les from the config/includes-subfolder and include them in
your con�guration. We will explain both ways in this section to give the reader a overview
how to write good con�guration �les.

3.1 Writing XML-Files

We will explain the con�guration by looking at an example XML-File which is included in
the simulator in config/visualization/chord.xml.

9

The �rst important part of the con�guration �le is the default section (cf. Listing 1). The
variables de�ned here are used in the whole con�guration �le and their values can be used
in the con�g �le (by preceeding the variable name with a dollar sign) and can be modi�ed
in the GUI before starting a simulation.

1 <Defau l t>
2 <Var iab le name="seed" value="0" />
3 <Var iab le name="finishTime" value="60m" />
4 <Var iab le name="actions"

value="config/visualization/chord-actions.dat" />
5 <Var iab le name="gnpDataFile"

value="config/data/mod_measured_data.xml" />
6 <Var iab le name="churn" value="true" />
7 </Defau l t>

Listing 1: The default section of the con�guration �le chord.xml

The seed variable is used for generation of random numbers. If you choose the same seed
during your simulations, you will end up with the same sequence of random numbers The
overall simulation time is de�ned in the finishTime variable, here it is 120 minutes. After
this time the events are no further processed and the simulation is evaluated. In order to
de�ne the initial action of the nodes and speci�c action intervals, an actions �le is de�ned.
It de�nes all actions that are to be executed during the simulation. The next two variables
setup the network. The gnpDataFile variable de�nes the location of the global network
positioning measurements �le, which is used to derive precise transmission delays between
two nodes. The churn variable switches churn on and o�.

1 <SimulatorCore c l a s s="org.peerfact.impl.simengine.Simulator"
2 s t a t i c="getInstance" seed="$seed" f i n i s hAt="$finishTime">
3 </SimulatorCore>

Listing 2: The used simulator of the con�guration �le chord.xml

The next part, the simulation core is de�ned, SimulatorCore, which provides a simulation
engine (cf. Listing 2). The simulation engine is in charge of queueing the events and process
them in order. Beside the full quali�ed class name of the simulation engine there is the
possibility to add parameters. Each attribute beside class and static will be handled as
there exists a Setter-method for it, otherwise an exception will be thrown while initializing.
To add new parameters, you add an attribute, for example test, with a value, for example
10 in the tag. Furthermore in the Simulator class you have to add a method setTest(int

a). The con�gurator will automatically call the method with the speci�ed parameter while
initializing.
Having setup up the simulator engine and the rough simulation times, next it is time to

de�ne the components to be used in the simulation (cf. Listing 3). One important compo-
nent, although not for the �nal p2p protocol testing, is the network layer. As mentioned
before, the network layer is in charge to determine delay times, loss rates, jitter, bandwidth
and further network related aspects for each node-pair. Thus it has a great in�uence on the
simulation results. Equal to the syntax of adding further parameters and variables to the
simulator core, also here it is possible to do so. In addition to adding parameters, there is the
possibility to use subtags. Subtags will be handled �rst and created like other components

10

with their own attributes (also with use of setter methods). The good thing about them is,
that you can pass speci�c parameters to classes inside of your components. As last step the
current component will be created and the sub objects will be added to the main compo-
nent as a parameter of a setter-method (named like the subtag). For the network layer the
objects for MeasurementDB, PacketSizing, etc. will be created and the setter methods will
be called for the attributes. After that, the main component NetLayer will be created and
for each subtag a setter method will be called with the respective object as parameter.

1 <NetLayer
2 c l a s s="org.peerfact.impl.network.modular.ModularNetLayerFactory"
3 downBandwidth="122880" upBandwidth="32768" useRegionGroups="false"
4 useInOrderDel ivery="false" pr e s e t="Fundamental">
5 <!−− Loads a XML−F i l e wi th measurement−data f o r l a t ency e t c . −−>
6 <MeasurementDB
7 c l a s s="org.peerfact.impl.network.modular.db.NetMeasurementDB"
8 f i l e="$gnpDataFile" />
9 <PacketS iz ing

10 c l a s s="org.peerfact.impl.network.modular.st.packetSizing.
11 IPv4Header" />
12 <Fragmenting
13 c l a s s="org.peerfact.impl.network.modular.st.fragmenting.
14 IPv4Fragmenting" />
15 <Tra f f i cCon t r o l
16 c l a s s="org.peerfact.impl.network.modular.st.trafCtrl.
17 BoundedTrafficQueue" />
18 <PLoss
19 c l a s s="org.peerfact.impl.network.modular.st.ploss.
20 PingErPacketLoss" />
21 <Latency
22 c l a s s="org.peerfact.impl.network.modular.st.latency.
23 GNPLatency" />
24 <J i t t e r
25 c l a s s="org.peerfact.impl.network.modular.st.jitter.
26 PingErJitter" />
27 <Pos i t i on i ng
28 c l a s s="org.peerfact.impl.network.modular.st.positioning.
29 GNPPositioning" />
30 </NetLayer>
31

32 <TransLayer
c l a s s="org.peerfact.impl.transport.DefaultTransLayerFactory" />

33

34 <Overlay
35 c l a s s="org.peerfact.impl.overlay.dht.chord.chord.components.
36 ChordNodeFactory" port="400" />
37

38 <Appl i ca t ion
39 c l a s s="org.peerfact.impl.application.dhtlookupgenerator.
40 DHTLookupGeneratorFactory">
41 <Di s t r i bu t i on
42 c l a s s="org.peerfact.impl.util.stats.distributions.

11

43 UniformDistribution"

44 min="30"
45 max="120" />
46 </Appl i ca t ion>

Listing 3: The used components of the con�guration �le chord.xml

Thus, in the next listing the components, i.e. network layers, are initialized. Here you
see the initialization of the network layer (NetLayer), of the transport layer (TransLayer)
and of the overlay layer (Overlay). Here, the overlay layer is initialized with Chord. Now,
the simulator knows which layers and implementations to initialized in order to have them
usable. You can also de�ne further network layer or overlays, as only in the next step we
attach them to actual nodes.
On top an application is de�ned. In our cases we use the a lookup generator which

periodically produces lookups in the network.
The next part of the con�guration �le deals with the used analyzers (cf. Listing 4).

Analyzers are listeners or monitors of speci�c events, which they log and create statistics of.
For example an overlay monitor would be informed every time a message is sent or received
by the overlay implementation. It maintains statistics on the number and type of message
sent and the generated tra�c. Further it could count the hops needed to perform a query
in the overlay. However, the analyzers also �ush their statistics periodically to the disk in
analyzer-speci�c �les in order to log the happenings in the simulation over time.

1 <Monitor c l a s s="org.peerfact.impl.common.DefaultMonitor"
2 s t a r t="0" stop="$finishTime">
3

4 <Analyzer
c l a s s="org.peerfact.impl.analyzer.visualization2d.analyzer.

5 VisAnalyzer" >
6 <OverlayAdapter

c l a s s="org.peerfact.impl.overlay.dht.chord.chord.vis.
7 ChordAdapter"/>
8 </Analyzer>
9

10 <Analyzer
c l a s s="org.peerfact.impl.analyzer.DefaultAggregationAnalyzer" />

11 <Analyzer c l a s s="org.peerfact.impl.analyzer.DefaultChurnAnalyzer" />
12 <Analyzer

c l a s s="org.peerfact.impl.analyzer.DefaultConnectivityAnalyzer" />
13 <Analyzer

c l a s s="org.peerfact.impl.analyzer.DefaultDHTOverlayAnalyzer" />
14 <Analyzer

c l a s s="org.peerfact.impl.analyzer.DefaultKBROverlayAnalyzer" />
15 <Analyzer c l a s s="org.peerfact.impl.analyzer.DefaultNetAnalyzer" />
16 <Analyzer

c l a s s="org.peerfact.impl.analyzer.DefaultOperationAnalyzer" />
17 <Analyzer c l a s s="org.peerfact.impl.analyzer.DefaultTransAnalyzer" />
18

19 <Analyzer c l a s s="org.peerfact.impl.overlay.dht.chord.base.analyzer.
20 ChordLookupOperationAnalyzer" />
21 <Analyzer c l a s s="org.peerfact.impl.overlay.dht.chord.base.analyzer.

12

22 ChordStructureAnalyzer" />
23

24 </Monitor>

Listing 4: The used analyzers of the con�guration �le chord.xml

In the monitor tag you can de�ne the implementations to use for analyzing (cf. Sec. 6).
In addition, the start and stop time of monitoring can be de�ned. The VisAnalyzer is a
special analyzer, as its observations are used to visualize the simulations during run time,
have a look at the con�gs in the �visualization"-folder. The visualization is overlay speci�c,
thus you must provide a speci�c adapter per overlay.
The next part of the con�guration �le assemble the node in the simulator (cf. Listing 5).

It de�nes either individual hosts or groups of hosts and the protocol layers they should be
equipped with. Hosts can con�gured individually or as groups of hosts. For each one, the
previously de�ned components from above can be used as building blocks. In addition, an
oracle can be con�gured for analyzers, the oracle provides all necessary information about
all hosts. In the beginning, the experiment size of the simulation is de�ned. It marks the
maximum number of hosts to be speci�ed. Then several nodes and groups are de�ned with
distinct names, group sizes and component equipment.

1 <HostBui lder
2 c l a s s="org.peerfact.impl.scenario.DefaultHostBuilder"
3 exper imentS ize="51">
4

5 <Host groupID="GlasgowCity">
6 <NetLayer />
7 <TransLayer />
8 <Overlay />
9 <Appl i ca t ion />

10 <Prope r t i e s enableChurn="$churn" />
11 </Host>
12

13 <Group groupID="LatinAmerica" s i z e="20">
14 <NetLayer />
15 <TransLayer />
16 <Overlay />
17 <Appl i ca t ion />
18 <Prope r t i e s enableChurn="$churn" />
19 </Group>
20

21 <Group groupID="Germany" s i z e="30">
22 <NetLayer />
23 <TransLayer />
24 <Overlay />
25 <Appl i ca t ion />
26 <Prope r t i e s enableChurn="$churn" />
27 </Group>
28 </HostBui lder>
29

30 <Oracle c l a s s="org.peerfact.impl.util.oracle.GlobalOracle" />

Listing 5: The de�ned hosts of the con�guration �le chord.xml

13

Afterwards, di�erent generators of operations are de�ned (cf. Listing ??). Starting at the
de�ned time, they periodically generate churn events (caused on a model).

1 <ChurnGenerator c l a s s="org.peerfact.impl.churn.DefaultChurnGenerator"
2 s t a r t="90m">
3 <!−− Churn prov ide s d i f f e r e n t s t a t i s t i c a l models . −−>
4 <ChurnModel
5 c l a s s="org.peerfact.impl.churn.model.KadChurnModel" />
6 </ChurnGenerator>

Listing 6: The used analyzers of the con�guration �le chord.xml

The last command of the con�guration �le points to a separate actions-�le (cf. Listing 7).
This command de�nes in speci�c which �le (named in the variable $actions) should be given
as input to which class (Scenario class). The scenario class �CSVScenarioFactory� is able to
interpret an action �le with a speci�c syntax and produce simulator events in accorance.

1 <Scenar io c l a s s="org.peerfact.impl.scenario.CSVScenarioFactory"
2 a c t i o n sF i l e="$actions"
3 componentClass="org.peerfact.impl.application.dhtlookupgenerator.
4 DHTLookupGenerator"

5 add i t i o n a lC l a s s e s="org.peerfact.api.overlay.JoinLeaveOverlayNode"/>

Listing 7: The scenario of the con�guration �le chord.xml

In the next listing, an action �le is presented (cf. Listing 8). The �le de�nes di�erent
actions for the hosts, which have been con�gured in the con�guration �le. Each line contains
the host (group) name, the time of the action (if a period is given, the events are uniformly
distributed), and a method with parameters of the given component class (de�ned in the
scenario tag). For the de�ned component class only the method name is required. Additional
classes need also the class name. The ScenarioFactory generates operations for the actions
at the de�ned times (cf. Sec. 4).

1 #Scenar io I d ea l
2 GlasgowCity 1 s Jo inLeaveOver layNode: jo in ca l l b a ck
3 LatinAmerica 1m−8m JoinLeaveOver layNode: jo in ca l l b a ck
4 Germany 1m−8m JoinLeaveOver layNode: jo in ca l l b a ck
5

6 LatinAmerica 80m startLookups

Listing 8: The action �le chord-actions.dat

With the given con�guration �le as example, we learned how to set up the frame for a
simulation, de�ne simulation times and random seed, how to de�ne components (speci�c
protocol layers), how to assemble hosts and how to give them a basic input of actions, which
they should perform during the simulation. Next, we will examine, how the simulations are
run and what happens inside the simulator.

3.2 XML-Files with includes

The config/includes-subfolder and all its subfolders contain a lot of di�erent prede�ned
parts, that can be used to write a con�guration �le fast. Includes exploit the fact that most

14

party of a con�guration �le can be reused in other con�guration �les. So instead of writing
them again and again, they are extracted in a separated �le that can be included. The
XML-File in Figure 9 has the basic properties as the one explained in the last section. As
it is visible, the �le is much shorter.

1 <Conf igurat ion xmlns :x i="http://www.w3.org/2001/XInclude">
2 <!−− In the "default"−s e c t i on you may de f i n e v a r i a b l e s to be used

throughout your con f i g by preceed ing the name with a d o l l a r s i gn −−>
3 <Defau l t>
4 <Var iab le name="seed" value="500" />
5 <Var iab le name="finishTime" value="120m" />
6 <Var iab le name="actions" value="config/chord-actions.dat" />
7 <Var iab le name="gnpDataFile" value="data/mod_measured_data.xml" />
8 <Var iab le name="churn" value="true" />
9 </Defau l t>

10

11 <!−− SimulatorCore −−>
12 <x i : i n c l u d e h r e f="includes/simengine/Simulator.xml" />
13 <!−− NetLayer −−>
14 <x i : i n c l u d e h r e f="includes/network/ModularNetLayer.xml" />
15 <!−− TransLayer −−>
16 <x i : i n c l u d e h r e f="includes/transport/DefaultTransLayer.xml" />
17 <!−− Overlay −−>
18 <x i : i n c l u d e h r e f="includes/overlay/dht/chord/ChordNode.xml" />
19 <!−− App l i ca t i on −−>
20 <x i : i n c l u d e h r e f="includes/application/DHTLookupGenerator.xml" />
21 <!−− Monitor −−>
22 <x i : i n c l u d e h r e f="includes/analyzer/DefaultMonitor.xml" />
23 <!−− HostBui lder −−>
24 <x i : i n c l u d e h r e f="includes/hosts/DefaultHostBuilderWithChurn.xml" />
25 <!−− ChurnGenerator −−>
26 <x i : i n c l u d e h r e f="includes/churn/ExponentialChurn.xml" />
27 <!−− Scenario −−>
28 <x i : i n c l u d e h r e f="includes/scenario/DHTLookupGenerator.xml" />
29 </Conf igurat ion>

Listing 9: A XML-File with includes for chord.xml

A single xml �le that is included contains mostly of a few lines of code. An example can
be seen in Listing 10 for the DHT.xml. The parts are self-explanatory and likewise to the
last section.

1 <?xml version='1.0' encoding='utf-8'?>
2 <Appl i ca t ion
3 c l a s s="org.peerfact.impl.application.DHTLookupGenerator.
4 DHTLookupGeneratorFactory">
5 <Di s t r i bu t i on
6 c l a s s="org.peerfact.impl.util.stats.distributions.
7 UniformDistribution"

8 min="30"
9 max="120" />

10 </Appl i ca t ion>

15

Listing 10: The DHTLookupGenerator.xml as include �le

As it can be seen, includes present an easy way to write a huge amount of di�erent
con�guration �les with only slight changes. numerous parts of the con�guration �les can
be interchanged because of the already prede�ned includes. A good example for this is the
DHT.xml in the config subfolder.

4 Simulation

In the previous sections we have seen how we can start and con�gure the simulator. Now
we will look in detail at the simulation itself for a deeper understanding. PeerfactSim.KOM
is an event based simulator. Everything what happens during the execution is ordered into
a queue of events and handled one after the other. If new events were created during ex-
ecution they would be arranged into the correct position of the queue (cf. Fig. 6). The
management and execution of the simulation and the queue is handled by the Simulator

and the Scheduler. New events can be added with the
scheduleEvent(Object content, long simulationTime, SimulationEventHandler

handler, SimulationEvent.Type eventType)

method. The simulationTime describes the time from the beginning of the simulation in
seconds and should be calculated with help of the time constants de�ned in the Simulator,
the event type has the function to distinguish di�erent events. The content contains arbi-
trary data and the handler is responsible for the event execution. Therefore it must imple-
ment the SimulationEventHandler interface with the eventOccurred(SimulationEvent

se) method which is called when the event should be executed. The simulation time, type
and data of the event is stored in the SimulationEvent. Often the content and the handler
are represented by the same object.

t1 t2 t3

1. Advancing of simulation time to the time of event t2

2. Execution of t2

Next event

Current simulation time

Simulation time

Figure 6: Example of the scheduling queue

There are several events which can be placed into the queue: On the one hand events
required for the real simulation and on the other hand administrative events. In the �rst
group operation executions and messages received events can be found as most important
ones. We will handle them in detail in this section. The second group contains di�erent task
like starting and stopping of the simulator or of the monitor (cf. Sec. 6) and also events for

16

the underlying subnet and the churn model. By handling everything in the simulator as an
event the correct execution can be guaranteed.
In this section we focus on the real simulation. First we present the overall concepts in

PeerfactSim.KOM and afterwards we traverse the execution on two examples of chord.
The most important type for the real simulation are operations. Every action in an overlay

network or an application is simulated in PeerfactSim.KOM as operation. In this object
which is saved the executing host data is hold from the begin until the end of a process (cf.
Fig. 7). In this chapter we will focus only on operations in the overlay layer, in an later
section we present the concept of operations in the application layer (cf. Sec. 5). Examples
for operations in the chord overlay are the join process as JoinOperation or the lookup
process as LookupOperation.

Host

Operation

Operation

Operation

Host

Host

Figure 7: The operations concept

Technically all operations existing in the implementation inherit from the Abstract-

Operation which handles similarities like scheduling, handling of timeouts and it also acts
as the event handler. The operation itself implements the execute()-method in which the
operation speci�c action is handled.
There exists two di�erent ways to generate the initial operations of the simulation: On

the one hand by con�guring di�erent actions through an actions-�le and on the other hand
by di�erent generators, for example by the DHTLookupGenerator which generates random
lookups, for a DHT overlay. Both con�gurations were presented in the Sec. 3.
In the �rst way the actions �le contains method calls which are executed at the destined

times. For example in the case of the chord overlay, the join() method in the ChordNode

will be called. This method creates the JoinOperation object and executes it at the re-
spective time. In contrast to this, the generators call methods of the component on their
own at random times depending on a model. In the case of the DHTLookupGenerator the
overlayNodeLookup() method of the ChordNode will be called in di�erent time slots. It
creates the LookupOperation object and executes it.

17

As another next important part messages exist in the simulator. Every message imple-
ments the Message interface. The meaning of messages is to exchange information between
the same layer on di�erent hosts (cf. Fig. 8). The important message for our purpose is the
OverlayMessage or in special the ChordMessage. It can be sent by using the TransLayer.
While processing and sending the message it will be included in an AbstractTransMessage

and AbstractNetMessage, but this should not be topic of this short guide. Similarly the
message will arrive at the other host in the TransLayer. For processing each node has a
TransMessageListener implemented, in the case of Chord ths is the ChordMessageHandler,
which processes the incoming messages in its messageArrived() method.

Host

Overlay

TransLayer

NetLayer

Host

Overlay

TransLayer

NetLayer

OverlayMessage

TransMessage

NetMessage

SubNet

virtual messages physical message way

Figure 8: The messages concept

In addition to the operations and messages there exist so called callbacks. Since the simu-
lation is event based, there is no way back to the caller of an action. Therefore the concept
of callbacks exists on each level. Every operation can include an OperationCallback. After
the operation has �nished either the method calledOperationSucceeded(Operation op)

or calledOperationFailed(Operation op) will be called in the caller.
Furthermore a TransMessageCallback can be added to a sent message. If a reply for

this message arrives, it will be handled in the callback's receive() method instead in a
TransMessageListener.

4.1 Examples for Chord

For a better comprehension on the presented concepts, we will present the execution of a
JoinOperation and a LookupOperation in detail in a sequence diagram.

4.1.1 JoinOperation

The join operation in chord is processed every time a node wants to join the chord ring.
The new one must know at least one node of the ring and sends a join message to it. The
existing node starts a lookup operation to �nd the responsible node for the key of the new
node. After a success it sends a join reply message to the new node with the found node.

18

As the last step the new node sends an handshake message to the found corresponding node
and gets the �nger table in the handshake reply to initiate its own one.
In the presented concept of PeerfactSim.KOM we have the following concrete implemen-

tation (cf. Fig. 9): The JoinOperation is initiated and started by the join() method of
the new ChordNode. As �rst step the operation creates a JoinMessage and sends it to a
random node in the chord ring with help of the sendAndWait() method in the TransLayer.
The message arrives at the receiver in the messageArrived()method of the ChordMessage-

Handler. Here a LookupOperation for the corresponding key will be created and proceeded
through the overlayNodeLookup() method of the ChordNode. After the successful oper-
ation the HandshakeCallback creates a JoinReply with the information about the found
node and uses the sendReply() of the TransLayer for the answer.
In the initiating node the JoinOperation was de�ned as callback for the join message

and therefore the JoinReply arrives directly in the JoinOperation. The operation pre-
pares a HandshakeMessage and sends it to the found responsible node where it is han-
dled in the messageArrived() method of the ChordMessageHandler. A HandshakeReply

with the �nger table is created and send back to the joining node which can �nish the
JoinOperation successfully. As last step the joinOperationFinished() method of the
ChordNode is called in which the routing table for the new node is created with the infor-
mation of the HandshakeReply.

19

Figure 9: Sequence diagramme of JoinOperation

20

4.1.2 LookupOperation

As a second important operation within chord, the LookupOperation is presented. The node
who wants to look up a certain key sends a message to another node corresponding on its
�nger table4 If the receiver is responsible itself it sends a reply, otherwise it sends the lookup
message to the next node regulated by its �nger table. All messages are approved by an
acknowledgement.
In the implementation (cf. Fig. 10) the lookup starts with the overlayNodeLookup()

method of a ChordNode. Here the LookupOperation is created. In the execution the op-
eration creates a MessageTimer object as callback to receive the acknowledgement. Then
it sends the LookupMessage through the TransLayer, the receiver is found by the routing
table.
At the receiver the message arrives in the messageArrived()method of the ChordMessage-

Handler. If the node is not responsible it sends a new LookupMessage to the next node
depending on the routing table. In the example the node is responsible. It creates also a
MessageTimer as callback and sends a LookupReply through the sendAndWait() method of
the TransLayer. Independent from the action the node sends also an AckMessage as reply
for the incoming message.
The original sender receives the answer in the messageArrived() method of the Chord-

MessageHandler and can �nish the LookupOperation by using the deliverResult()method.
It also sends an AckMessage as reply.
The AckMessages arrive in the receive() methods of the created MessageTimers to make

sure that each message was correctly delivered, otherwise a time out occurs and another
transmission will be started.

4Chord works with a �nger table as routing table in each node. This table contains references to the next
nodes in the routing in larger intervals to manage bigger steps than the normal iteration through the
ring.

21

Figure 10: Sequence diagramme of LookupOperation

22

5 Overlays and Applications

In the previous section the concept of the simulator was presented with focus on the overlay
layer. All explained operations were initiated on this layer. Besides the simulation of the
actions in the overlay layer PeerfactSim.KOM o�ers the possibility to simulate di�erent
applications on top of the peer-to-peer overlay layer. At the moment a default Filesharing
application and di�erent LookupGenerators are implemented.
The operation concept visualized in the previous section is also present in this layer. With

help of generators or actions de�ned in an actions �le �lesharing speci�c operations can
be scheduled. Many of the applications operations use functions of the underlying overlay,
for example the presented join() or overlayNodeLookup() method of the ChordNode. As
a consequence we get nested operations on the di�erent layers. The reader of this guide
should be able to understand the implementation of the application with the knowledge of
the previous section.

6 Analyzer

The main reason for using a simulator is the generation of statistics on the reviewed aspects.
Therefore PeerfactSim.KOM has the possibility to collect data and calculate results.
In analogy to the layered structure of the simulator there exist di�erent analyzer types (cf.

Fig. 11). For the overall monitoring of the simulation an Analyzer can be de�ned which
calculates statistics independent of the current simulation events (for example it counts
the available hosts at di�erent times). The operation handling, especially the start and
end of the separate operations, can be observed by di�erent OperationAnalyzer. The
overlay, transport and network layer can be monitored by a DHTOverlayAnalyzer or a
KBROverlayAnalyzer or a UnstructeredOverlayAnalyzer (message forwarding and query
monitoring), TransAnalyzer (sending and receiving of messages), NetAnalyzer (sending,
receiving and dropping of messages) or ConnectivityAnalyzer (online and o�ine status of
hosts). As last type the ChurnAnalyzer monitors the modelled churning.
To use analyzers in the simulation, the Monitor-part with analyzers must be de�ned in

the con�guration (cf. Sec. 3). The DefaultMonitor is the basis of the whole monitoring and
analysis process, every con�gured analyzer is registered to it. The monitoring will be started
and stopped by di�erent events in the simulation, the time is con�gured by the start and
end attributes in the con�guration �le.
The di�erent types of analyzers are represented as interfaces in the implementation (cf.

Fig. 12). All analyzers inherit from the Analyzer which only provides the start() and
stop() methods. These two are called by the monitor at the beginning and end of the
monitoring. The analyzer can do their own initialization (for example preparing of �les
as in the AbstractFileAnalyzer). Most of the analyzers create themselves events in the
simulation queue to do di�erent jobs periodically (for example write statistics to a �le).
Some analyzers only use these periodic tasks to generate data with help of an oracle5 which
has general knowledge about all hosts.
Furthermore speci�c interfaces for each analyzer type exist and can be used. In addition

5The GlobalOracle can be con�gured in the con�guration �le and has global knowledge about all hosts
for analyzing.

23

Overlay

Transport Layer

Application

Host

Monitor

ChurnAnalyzer

NetAnalyzer

ConnectivityAnalyzer

Netzwork Layer

TransAnalyzer

KbrAnalyzer

Simulation Engine

OperationAnalyzer
Operation Handling

Churn Model

Analyzer

Figure 11: Overview about the analyzers

to the start() and stop() methods they declare di�erent event speci�c handler methods.
The DefaultMonitor passes the monitored events to the corresponding registered analyzers
which use the data to generate statistics.
All analyzer implementations which inherit from the AbstractFileMetricAnalyzer use

a metric concept for collecting data. The analyzer itself only add data to the di�erent
used metrics, for example a CounterMetric or a StatisticMetric. The base analyzer is
responsible for the analysis and output of the statistics.
A special analyzer exists in the VisAnalyzer. It implements four interfaces (Connectivity-

Analyzer, NetAnalyzer, TransAnalyzer and OperationAnalyzer) and collects the data like
all other analyzers. The di�erence is usage of the data. Instead of generate statistics in �les
all data is hold in memory and presented in the visualization window after the simulation
has �nished. From here it can be saved as visualization �le.

6.1 Example for chord

After an overview on all existing analyzers we will show the monitoring on the example
of the JoinOperation presented in Sec. 4.1. The steps in the explanation relegate to the
sequence diagrams (cf. Fig. 9).
The �rst monitor call is executed when the LookupOperation starts (step 2). This

event is the start of every operation and calls the operationInitiated() method of the
DefaultMonitor and of each registered OperationAnalyzer. While sending the JoinMessage
(step 2.1) the methods transMsgSent() and netMsgSend() are called in the responsible
analysers.

24

Figure 12: The interfaces for di�erent analyzers

At the receiver node the netMsgReceive() and transMsgReceived()methods are called in
step 3. While handling the messages the ChordMessageHandler provides its status by call-
ing messageForwarded() and messageDelivered() methods of the DefaultDHTOverlay-

Analyzer (step 3.1). During the further execution the same analyzer methods are called
at the corresponding steps. After the successful join the operationFinsihed() method is
called at the end of every operation (step 9.1).
Furthermore offlineEvent() and onlineEvent() are called depending on the churn

model.

7 Further Information

This was only a short overview of the functionality of PeerfactSim.KOM. There are several
possibilities to delve deeper into the matter.
First of all the website http://www.peerfact.org presents all up-to-date information con-

cerning the simulator. Next to the current release you can �nd several documents, video
tutorials, a forum and other materials there. This is also the �rst way to get in contact with

25

http://www.peerfact.org

the developers.
For a deep look in the underlying technique, especially at the lower layers, you should

read the full documentation, also available at the homepage.
Furthermore you can go through the source code to get a deep insight with help of many

comments you �nd in it.

26

	The Simulator
	The functional layers
	The workflow of a simulation

	Setup and Start
	Download and Setup
	Project structure
	Implementation

	Start of the simulator
	Run with GUI
	Run from console
	Batch simulations
	Evaluation of the simulation results

	Configuration
	Writing XML-Files
	XML-Files with includes

	Simulation
	Examples for Chord
	JoinOperation
	LookupOperation

	Overlays and Applications
	Analyzer
	Example for chord

	Further Information

